Transition Metal-Catalyzed Decarboxylative allylation and Benzylation reactions

2013. 05. 01 Haye Min Ko

Contents

- 1. Introduction to Decarboxylative Coupling
- 2. Decarboxylative Allylation of Enolates2.1. Asymmetric DcA of Enolates2.2. Applications
- 3. Sp²-Hybridized Carbon Nucleophiles
- 4. Sp-Hybridized Carbon Nucleophiles
- 5. Decarboxylative Benzylation
- 6. Conclusion

1. Introduction to Decarboxylative Coupling

Standard Cross-Coupling vs Decarboxylative Coupling

2. Decarboxylative Allylation of Enolates

a) Shimizu, I.; Yamada, T.; Tsuji, J. *Tetrahedron Lett.* 1980, *21*, 3199.
b) Tsuda, T.; Chujo, Y.; Nishi, S.; Tawara, K.; Saegusa, T. *J. Am. Chem. Soc.* 1980, *102*, 6381

Ester Enolates

Tsuji, J.; Yamada, T.; Minami, I.; Yuhara, M.; Nisar, M.; Shimizu, I. *J. Org. Chem.* **1987**, *52*, 2988.

Imao, D.; Itoi, A.; Yamazaki, A.; Shirakura, M.; Ohtoshi, R.;Ogata, K.; Ohmori, Y.; Ohta, T.; Ito, Y. *J. Org. Chem.* **2007**, *72*, 1652.

Ester Enolates

a) Chattopadhyay, K.; Jana, R.; Day, V. W.; Douglas, J. T.; Tunge, J. A. *Org. Lett.* **2010**, *12*, 3042. b) Tardibono, L. P.; Patzner, J.; Cesario, C.; Miller, M. J. *Org. Lett.*, **2009**, *11*, 4076.

Regioselectivity in Allylation

a) Waetzig,S.R.;Rayabharapu,D.K.;Weaver,J.D.;Tunge,J.A. *Angew. Chem., Int. Ed.* **2006**, *45*, 4977. b) Shintani, R.; Tsuji, T.; Park, S.; Hayashi, T. *Chem. Commun.* **2010**, *46*, 1697.

Intermolecular Coupling of β-Keto Acids

^a Pd(PPh₃)₄, 23 °C, THF or C₆H₆, 0.5-20 h

- a) Tsuda, T.; Okada, M.; Nishi, S.; Saegusa, T.J. Org. Chem. 1986, 51, 421.
- b) Tsuda, T.; Tokai, M.; Ishida, T.; Saegusa, T.J. Org. Chem. 1986, 51, 5216.

2.1. Asymmetric DcA of Enolates

Burger, E.C.; Tunge, J.A. Org. Lett. 2004, 6, 4113.

Asymmetric DcA of Allyl Vinyl Carbonates

a) Behenna, D. C.; Stoltz, B. M. J. Am. Chem. Soc. 2004, 126, 15044

- b) Trost, B. M.; Xu, J. J. Am. Chem. Soc. 2005, 127, 2846.
- c) Trost, B. M.; Xu, J.; Schmidt, T. J. Am. Chem. Soc. 2009, 131, 18343.

Asymmetric DcA of Allyl Vinylogous Carbonates

entry	n	\mathbb{R}^1	R ²	solvent	temp (°C)	yield (%)	ee (%)
1	1	н	н	THF	-20	100	98
2	2	Н	Н	THF	0-4	100	94
3	1	Me	Н	THF	0-4	100	99
4	0	Me	н	THF	0-4	96	80
5	1	Ph	н	dioxane	23	100	97
6	1	Н	Me	THF	0-4	91	79

a) Trost, B. M.; Bream, R. N.; Xu, J. *Angew. Chem., Int. Ed.* **2006**, *45*, 3109. b) Levine, S. R.; Krout, M. R.; Stoltz, B. M. *Org. Lett.* **2009**, *11*, 289.

Asymmetric DcA of α-Fluoro- β-Ketoesters

a) Nakamura, M.; Hajra, A.; Endo, K.; Nakamura, E. *Angew. Chem., Int. Ed.* **2005**, *44*, 7248. b) Burger, E. C.; Barron, B. R.; Tunge, J. A. *Synlett* **2006**, 2824.

Asymmetric DcA of Acyclic Allyl Enol Carbonates

entry	R	time (h)	yield (%)	ee (%)
1	Me	3	96	94
2	Et	2	94	94
3	n-Pent	16	93	92
4	Bn	1	75	88
5	<i>i</i> -Pr	24	30	32

Trost, B. M.; Xu, J.; Schmidt, T. J. Am. Chem. Soc. 2009, 131, 18343.

Protected α-Hydroxy Allyl Vinyl Carbonates

Protected α-Hydroxy Allyl Vinyl Carbonates

entry	SM	R	yield 40	yield 41
1	38	TBDMS	93	0
2	39	TBDMS	86	0
3	38	benzoyl	93	0
4	39	benzoyl	11	75 (dppe)
5	38	acetyl	40	60

entry	SM	R	yield (%)	ee (%)
1	38	Ph	93	92
2	39	Ph	89	91
3	38	p-MeOC ₆ H ₄	94	92
4	39	p-MeOC ₆ H ₄	86	92
5	38	o-NO2C6H4	69	79
6	39	o-NO2C6H4	69	72
7	38	2-furyl	81	93
8	38	1-cyclohexenyl	93	98
9	38	PhCC	76	89

a) Trost, B. M.; Xu, J.; Reichle, M. J. Am. Chem. Soc. 2007, 129, 282.
b) Trost, B. M.; Xu, J.; Schmidt, T. J. Am. Chem. Soc. 2008, 130,11852.

2.2. Applications

Synthesis of Trospectomycin Sulfate

Synthesis of (\pm) -Lycopladine A

a) Herrinton, P. M.; Klotz, K. L.; Hartley, W. M. *J. Org. Chem.* **1993**, *58*, 678. b) DeLorbe, J. E.;Lotz, M. D.;Martin, S. F. *Org.Lett.* **2010**, *12*, 1576.

2.2. Applications

Synthesis of (-)-Cyanthiwigin

Synthesis of (+)-R-Dichronanone

a) McFadden, R. M.; Stoltz, B. M. *J. Am. Chem. Soc.* **2006**, *128*,7738. b) Enquist, J. A., Jr.; Stoltz, B. M. *Nature* **2008**, *453*, 1228.

3. Sp²-Hybridized Carbon Nucleophiles

 $Pd(PPh_3)_4$

63%

NC

Snider, B. B.; Buckman, B. O. J. Org. Chem. 1992, 57, 4883

α -allylation of Coumarins

Jana, R.; Trivedi, R.; Tunge, J. A. Org. Lett. 2009, 11, 3434.

4. SP-Hydridized Carbon Nucleophiles

DcA of Acetylides

Rayabarapu, D. K.; Tunge, J. A. J. Am. Chem. Soc. 2005, 127, 13510.

Decarboxylative coupling of Allenes with Acetylides

5. Decarboxylative Benzylation

Introduction to Decarboxylative Benzylations

Decarboxylative Benzyl Ether Synthesis

Kuwano, R.; Kusano, H. Org. Lett. 2008, 10, 1979

Decarboxylative Benzylation of Diphenylglycinate imines

Fields, W. H.; Chruma, J. J. Org. Lett. 2010, 12, 316.

Decarboxylative Benzylation of Acetylides

a) Rayabarapu, D. K.; Tunge, J. A. *J. Am. Chem. Soc.* **2005**, *127*, 13510. b) Pi, S.-F.; Tang, B.-X.; Li, J.-H.; Liu, Y.-L.; Liang, Y. *Org. Lett.* **2009**, *11*, 2309

Decarboxylative Benzylation of Acetylides

Intermolecular Decarboxylative Benzylation

Zhang, W.-W.; Zhang, X.-G.; Li, J.-H. J. Org. Chem. 2010, 75, 5259.

Decarboxylative Benzylation of Enolates

Torregrosa, R. R. P.; Ariyarathna, Y.; Chattopadhyay, K.; Tunge, J. A. J. Am. Chem. Soc. 2010, 132, 9280.

- 1. Decarboxylative coupling reactions offer a "greener" alternative to standard allylation and benzylation reaction.
- 2. Developing interceptive decarboxylations of less activated pronucleophiles would allow the synthsis of many relevant chemical building blocks.

Thank you

Quiz!

Quiz

