Neighbors of Catalytic anti-Markovnikov Olefin Hydration:

A Mechanistic Review

Scope of today's talk

✓ Key questions for reactivity

What is the mechanism for each reaction? What is the RDS? How to improve the reactivity?

✓ Key question for selectivity

What is the origin of AM selectivity?

Contents: sorted by mechanism

Overview of M-Nu insertion pathway

✓ Simplified reaction mechanism

✓ Three examples

✓ Regioselectivity

Migratory insertion of M-N and M-O bond

✓ Reactivity

✓ Selectivity

Conclusions:

- ✓ Rate: Rh-N > Rh-O >> Rh-C
- ✓ Reason: Rh-N and Rh-O dative bond in the TS

Conclusions:

- ✓ Enhanced Markovnikov selectivity for M-N and M-O insertion
- ✓ Growing positive charge on carbon

Tye, J. W.; Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 14703.

How to accelerate migratory insertion?

Experiments about steric effect

 \checkmark

3a - ethylene adduct (**8**), R = *t*-Bu $k_{mig ins} = 8.7 \times 10^{-4} \text{ s}^{-1} (\Delta \text{G}^{\ddagger} = 16.0 \text{ kcal/mol})$ **3f** - ethylene adduct, R = *i*-Pr $k_{mig ins} = 0.97 \times 10^{-4} \text{ s}^{-1} (\Delta \text{G}^{\ddagger} = 17.0 \text{ kcal/mol})$

Computational result

Conclusions:

- ✓ Bigger steric accelerates insertion
- ✓ However, it also slows down binding

Hanley, P. S.; Hartwig, J. F. J. Am. Chem. Soc. 2011, 133, 15661.

How to accelerate migratory insertion?

Experiments about electronic effect

 \checkmark

Computational result

Conclusions:

- ✓ EWG on ligand accelerates insertion
- ✓ Electron-poor olefin: insert faster but bind badly

Hanley, P. S.; Hartwig, J. F. J. Am. Chem. Soc. 2011, 133, 15661.

✓ Key question: syn or anti attack?

 $PdCl_{4}^{2-} + // - \left[\begin{array}{c} & Pd & & \\ & Pd & Vs & V \\ H_{2}O & Vs & V \\ & & H \end{array} \right]^{\dagger} \xrightarrow{Pd - OH} H$ Nu attack Pd-O insertion

Determination of the rate law

Syn attack mechanism

For a detailed review on this 45-year debate, see: Keith, J. A.; Henry, P. M. Angew. Chem. Int. Ed. 2009, 48, 9038.

✓ KIE experimental result

✓ Combining the two kinetic information

Key information:

- ✓ Deprotonation happens *before* RDS
- ✓ H-shift happens *after* RDS!
- ✓ OH- attack is impossible, considering its concentration *Conclusion:*
- $\checkmark\,$ Pd-O insertion is the correct mechanism under Wacker condition

✓ Syn or anti attack is also distinguishable from stereochemistry experiment

Question 01:

Hayashi did an isotope experiment in 2004 to distinguish between *syn* and *anti* attack. Assume that Pd-O insertion is RDS, while beta-hydrogen elimination and re-insertion are facile.

(1) Which of four products come(s) from *syn* attack? Please also draw the key intermediate(s).

(2) The picture above is captured from a review paper by Hartwig. The authors claimed that *syn* : *anti* = 91:9 based on this experiment. Compare your result with their claim.

(3) Given that **D** is also 5% deuterated at 3-position (95% at 2-position), calculate an approximate ratio of syn : anti.

Hayashi, T.; Yamasaki, K.; Mimura, M.; Uozumi, Y. *J. Am. Chem. Soc.* **2004**, *126*, 3036; Hanley, P. S.; Hartwig, J. F. *Angew. Chem. Int. Ed.* **2013**, *52*, 8510.

Wright, J. A.; Gaunt, M. J.; Spencer, J. B. Chem. Eur. J. 2006, 12, 949.

✓ Screening of protecting group (directing group)

A, B or C R² N^{R³}

✓ Substrate scope

entry	substrate	cat	2 : 3 ^a	Isolated yield %
1	$\mathbf{R} = \mathbf{C}\mathbf{H}_3 1\mathbf{g}$	В	>99:1	94
2	$\mathbf{R} = \mathbf{C}_5 \mathbf{H}_{11} 1 \mathbf{h}$	В	>99:1	91
3	\uparrow_{1i}	A	>99:1	93
4		A	94:6	74 ^b
5	R = Bn 1I	В	>99:1	94
6	$\mathbf{R} = \mathrm{BnOCH}_2 \mathbf{1m}$	В	>99:1	93
7	$\mathbf{R} = \mathbf{Ph} \mathbf{1n}$	В	>99:1	95
8	C \$ 10	В	>99:1	77
9		A	>1:99	⁸⁹
10		A B	-	0 0

^{*a*} A: Pd(MeCN)₂Cl(NO₂) (1–5 mol %), CuCl₂ (5–20 mol %), *tert*-BuOH, O₂; 16 h. B: PdCl₂ (10 mol %), CuCl (1.0 equiv), DMF/H₂O (7:1). O₂; 3 d. C: PdCl₂ (10 mol %), CuCl₂ (50 mol %), DMF/H₂O (4:1), O₂; 3 d. ^{*b*} 5 mol % Pd-cat, 20 mol % CuCl₂. ^{*c*} Determined by ¹H NMR. ^{*d*} 1 mol % Pd-cat, 5 mol % CuCl₂.

Weiner, B.; Baeza, A.; Jerphagnon, T.; Feringa, B. L. J. Am. Chem. Soc. 2009, 131, 9473.

Dong, J. J.; Fañanás-Mastral, M.; Alsters, P. L.; Browne, W. R.; Feringa, B. L. Angew. Chem. Int. Ed. 2013, 52, 5561.

 \checkmark

Mechanism study

✓ Various protecting group scope

Dong, J. J.; Harvey, E. C.; Fañanás-Mastral, M.; Browne, W. R.; Feringa, B. L. J. Am. Chem. Soc. 2014, 136, 17302.

 Directing group *usually* gives a mixture: Markovnikov is also difficult! ✓ Ligand screening

Michel, B. W.; Camelio, A. M.; Cornell, C. N.; Sigman, M. S. J. Am. Chem. Soc. 2009, 131, 6076.

Michel, B. W.; Camelio, A. M.; Cornell, C. N.; Sigman, M. S. *J. Am. Chem. Soc.* **2009**, *131*, 6076; Michel, B. W.; McCombs, J. R.; Winkler, A.; Sigman, M. S. *Angew. Chem. Int. Ed.* **2010**, *49*, 7312; Sigman, M. S.; Werner, E. W. *Acc. Chem. Res.* **2012**, *45*, 874.

Proposed three mechanisms

Kinetic experiment

Question 02: (Math-free question!)

Sigman proposed three mechanisms for their reaction. The main difference is whether TBHP coordinates first (path: F-G-H-I-J) or olefin coordinates first (path: F-K-H-I-J or F-K-L-I-J). The rate law is: first order on Pd and olefin, but *saturation kinetics on TBHP*. (1) Forget about three mechanisms. It is fair to assume that peroxypalladation is RDS, while olefin and TBHP coordination is a pre-equilibrium. Based on this assumption, what would you expect for the reaction order for TBHP?

(2) Now look at their mechanisms closely. Actually, pre-coordination means the coordination step is *NOT* involved in the catalytic cycle. Don't try to derive the rate law! Please choose the right mechanism and *qualitatively* explain why.

✓ The originally proposed mechanism (the TS is weird)

Key findings:

- ✓ Primary KIE: 2.7 5.2
- ✓ Rate law: first order on Ln, zero order on substrate
- ✓ ΔH≠ = 12.7 ± 1.4 kcal/mol
- $\checkmark \Delta S^{\neq} = -27.0 \pm 4.6 \text{ cal/mol}^{\cdot}\text{T}$

Conclusions:

- ✓ Zero-order: resting state directly undergoes RDS without pre-association or dissociation
- ✓ But it can also mean similar inhibition by product
- ✓ Significant N-H breaking during RDS
- ✓ Large negative ΔS^{\neq} : highly ordered TS

Gagne, M. R.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1992, 114, 275.

✓ Application for fused ring synthesis: evidence for Ln-C species

Question 03:

In 1998, Marks showed that his Ln-catalyzed hydroamination chemistry can be used to quickly prepare tricyclic fused ring system. Although we knew it might not be that useful considering the poor functional group tolerance, the success of tricyclic fused ring demonstrates the lifetime of Sm-C species.

(1) Propose a mechanism for the above transformation. Remember that syn attack is the right mechanism and obviously alkyne is more active than alkene in hydroamination.

(2) The reaction is also diastereoselective, please draw the *last* hydroamination step in a chair form and explain why two highlighted hydrogens are *trans* to each other.

Key findings:

- ✓ Protonolysis is RDS: primary KIE
- ✓ ΔS[≠] is relative to resting state: cyclization would result in positive entropy because of releasing binding substrate

Tobisch, S. J. Am. Chem. Soc. 2005, 127, 11979.

✓ Kinetic experiment

KIE = 4.6

Their proposed mechanism

• six-membered transition state."

Dunne, J. F.; Fulton, D. B.; Ellern, A.; Sadow, A. D. *J. Am. Chem. Soc.* **2010**, *132*, 17680; Hanley, P. S.; Hartwig, J. F. *Angew. Chem. Int. Ed.* **2013**, *52*, 8510.

Discovery of the reaction

0.5	mol % [lr(coe) ₂ C	il] ₂	NH(<i>m</i> -Xyl)	Base	Yield (%)	<i>ee</i> (%)
	% (R)-DM-Seg		\overline{A}	None	6	37
1.2 equiv	1% base		/	KHMDS	63	96
+	70 °C, 12 h			KNHXyI	61	96
<i>m</i> -xyiyiamine						

Entry	Ligand	Ar"	Dihedral Angle ^h	Yield (%)	ee (%)
1	(R)-Ar-BINAP	Ph	86°	2	90
2		DM		26	85
3	(R)-Ar-Segphos	Ph	67°	19	- 99
4		DM		63	96
5	(R) -Ar-Segphos= $\operatorname{Ar_2P} / / / / / / / / / / / / / / / / / / /$	DTBM		96	97
6	(R)-Ar-MeOBIPHEP	Ph	72°	7	96
7		DM		46	93
8	$(R)-Ar-MeOBIPHEP= Ar_2 P + COMe$	DTBM		90	97

Key findings:

- ✓ Small bite angle with big steric gives better yield (facilitate insertion?)
- ✓ Limitation: only strained olefin

^{*a*} DM = 3,5-dimethylphenyl; DTBM = 3,5-di-*tert*-butyl-4-methoxyphenyl. ^{*b*} Values from Jeulin, S.; de Paule, S. D.; Ratovelomanana-Vidal, V.; Genet, J. P.; Champion, N.; Dellis, P. *Proc. Natl. Acad. Sci. U.S.A.* **2004**, *101*, 5799.

Zhou, J. S.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 12220.

An unstrained version

Ŧ	(3)-DIVI-SEGETIOS	3	120	10	2.0.0
5	(R)-DTBM-MeOBIPHEP	5	120	28	1.9:1
6	(S)-DTBM-SEGPHOS ^e	5	120	44	1.9:1
7	(S)-DTBM-SEGPHOS	1	120	13	3.3:1
8	(S)-DTBM-SEGPHOS	20	120	74	1.3:1
9	(S)-DTBM-SEGPHOS	20	100	47	1.8:1
10	(S)-DTBM-SEGPHOS	20	140	96	1.4:1

^{*a*}Reactions were performed **neat** in 1-octene with 0.1 mmol of 4-*tert*butylbenzamide. ^{*b*}Yields and conversions were determined by GC analysis with dodecane as an internal standard. ^{*c*}dcpm = bis-(dicyclohexylphosphino)methane. ^{*d*}DM = 3,5-dimethylphenyl. ^{*e*}DTBM = 3,5-di-*tert*-butyl-4-methoxyphenyl.

✓ Substrate scope

Key finding:

- ✓ Small bite angle with big steric gives better yield
- ✓ Work up with ⁱPrOH

Sevov, C. S.; Zhou, J. S.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 11960.

 ✓ Axial steric that helps insertion but allows binding is good

Sevov, C. S.; Zhou, J. S.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 11960.

 \searrow

ſ

 \searrow

ſ,

✓ Another unstrained version

		N H 4 equiv	rr(codCl] ₂ 6 ligand ne, EtOAc	n-Hex 1-ene	ex		
entry	ligand	$x \mod \% [\operatorname{Ir}(\operatorname{cod})\operatorname{Cl}]_2$	temp (°C)	EtOAc (equiv)	% 1	% 1-ene	1/1-ene
1	(S)-SEGPHOS	1	150	0	9	7	1.3
2	(S)-DM-SEGPHOS	1	150	0	15	5	3.0
3	(S)-DTBM-SEGPHOS	1	150	0	74^{b}	23	3.2
4	(S)-DTBM-SEGPHOS	2	120	0	72	20	3.6
5	(S)-DTBM-SEGPHOS	2	100	0	45	11	4.1
6	(S)-DTBM-SEGPHOS	2	100	10	50	13	3.8
7	(S)-DTBM-SEGPHOS	2	100	5	52	13	4.0
8	(S)-DTBM-SEGPHOS	2	100	1	76 ^c	18	4.2
9	(S)-DTBM-SEGPHOS	2	100	0.5	63	16	3.9
10^d	(S)-DTBM-SEGPHOS	4	80	1	65 ^e	12	5.4

Sevov, C. S.; Zhou, J. S.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 3200.

✓ C-H activation is resting state

Sevov, C. S.; Zhou, J. S.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 3200.

✓ Proposed mechanism

Key findings:

- ✓ KIE = 1.7, a little bit bigger than secondary KIE (my understanding is a result of thermodynamic isotope effect: Ir-H vs N-H)
- ✓ Rate law: zero order on substrate
- ✓ ΔH[≠] = 30.0 ± 0.4 kcal/mol
- $\checkmark \Delta S^{\neq} = 6 \pm 1 \text{ cal/mol}^{T}$
- ✓ Preference to insert Ir-N over Ir-C is confirmed by DFT

Sevov, C. S.; Zhou, J. S.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 3200.

Overview of Nu attack pathway

✓ Simplified reaction mechanism

✓ Three examples

✓ Regioselectivity

Palladium-catalyzed hydroamination

Michael, F. E.; Cochran, B. M. *J. Am. Chem. Soc.* **2006**, *128*, 4246; Cochran, B. M.; Michael, F. E. *J. Am. Chem. Soc.* **2008**, *130*, 2786.

- ✓ It seems that the reaction outcomes depends highly on the substrate
- \checkmark No further comment on this

Markovnikov selectivity

Takemiya, A.; Hartwig, J. F. *J. Am. Chem. Soc.* **2006**, *128*, 6042; Liu, Z.; Hartwig, J. F. *J. Am. Chem. Soc.* **2008**, *130*, 1570.

Julian, L. D.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 13813.

Liu, Z.; Yamamichi, H.; Madrahimov, S. T.; Hartwig, J. F. J. Am. Chem. Soc. 2011, 133, 2772.

[lr(cod)]₂-catalyzed hydroamination

✓ Screening the metal source

entry	catalyst precursor	conversion to 2a ^b
1-1	$[Ir(COD)Cl]_2$	>95
1 - 2	$[Ir(COE)_2Cl]_2$	10
1-3	[Ir(COD)OMe] ₂	7
1 - 4	$[(\eta^{5}-C_{5}Me_{5})IrCl_{2}]_{2}$	<5
1 - 5	$[Rh(COD)Cl]_2$	<5
1-6	$[Ir(COD)_2]BF_4$	<5
1 - 7	[Ir(MeCN) ₂ (COD)]BF ₄	28^c
1-8	$[Ir(COD)PCy_3(py)]PF_6$	10^c
1-9	none	<5

Key findings:

- ✓ The metal alone gives good yield
- ✓ Addition of NnBu4Cl, LiOTf, AgBF4, or LiB(C6F5)4 · 2.5OEt2 all give worse yield

[lr(cod)]₂-catalyzed hydroamination

✓ Screening the ligand

	n 2.5 mol% [lr(COD 5 mol% ligano	D)Cl] ₂ Bn
Ph Ph	■ 1,4-dioxane, 65 °C	, 24 h Ph
1a		2a
Entry	Ligand	% Conversion ^b
		(% Yield 2a)
S2-1	-	60
S2-2	2,2'-bipyridine	<5
S2-3	Terpyridine	<5
S2-4	PPh ₃	<5
S2-5	PCy ₃	34
S2-6	$P(t-Bu)_3$	62
S2-7	$DPPE^{c}$	>95 (<5)
S2-8	DCPE^d	90 (<5)
S2-9	DPPB ^e	<5
S2-10	Xantphos ^f	<5
S2-11	DPEphos ^g	<5
S2-12	DPPF ^h	>95 (<5)
S2-13	DiPPF^{i}	45 (<5)
S2-14	L1	<5
S2-15	L2	>95
S2-16	L3	7
S2-17	L4	>95
S2-18	L5	6
S2-19	L6	58
S2-20	L7	>95
S2-21	L8	>95

Key findings:

- ✓ Some ligands did improve reactivity
- ✓ But, concentration of ligands is an inverse order to the rate
- ✓ The effect of ligand is to stabilize the Ir center, and the real catalyst is [Ir(cod)Cl]₂

Hesp, K. D.; Tobisch, S.; Stradiotto, M. J. Am. Chem. Soc. 2010, 132, 413.

[lr(cod)]₂-catalyzed hydroamination

Kinetic studies

Key findings:

- ✓ KIE = 3.4
- ✓ Rate law: first order on [Ir], monomeric
- ✓ $\Delta H^{\neq} = 20.9 \pm 0.3$ kcal/mol, $\Delta S^{\neq} = -23.1 \pm 0.8$
 - cal/mol[·]T, $\Delta G^{\neq} = 21.6 \pm 0.3$ kcal/mol
- ✓ Hammett plot: electron-rich amine is faster
- DFT studies

Key findings:

- ✓ Oxidative addition of N-H is inaccessible, 38.3 kcal/mol
- ✓ Calc'd ΔG^{\neq} = 24.6 kcal/mol
- ✓ Proton transfers to Ir then RE, instead of direct protonolysis
- ✓ Higly ordered RE is RDS

Proposed Mechanism

Hesp, K. D.; Tobisch, S.; Stradiotto, M. J. Am. Chem. Soc. 2010, 132, 413.

Overview of E attack pathway

✓ Simplified reaction mechanism

✓ Two examples

✓ Regioselectivity

Ruthenium-catalyzed alkyne hydration

The rational for selectivity

Key findings:

- ✓ Selectivity is dictated by the first step: irreversible protonation
- ✓ Electronically, Markovnikov favors
- ✓ Selectivity comes from steric concern

Tokunaga, M.; Suzuki, T.; Koga, N.; Fukushima, T.; Horiuchi, A.; Wakatsuki, Y. J. Am. Chem. Soc. 2001, 123, 11917.

Ruthenium-catalyzed alkyne hydration

✓ Proton shuttle strategy

Key finding:

✓ The imidazole functions as a proton shuttle that speeds up the reaction

Substrate scope

			aldehyde yields			
entry	alkyne	1 h	3 h	later (time)		
1	CH ₃ (CH ₂) ₆ C≡CH	55.0	99.9	nd		
2^b	$CH_3(CH_2)_6C \equiv CH$	nd	30.2^{b}	98.6 (48 h)		
3	$C_6H_5C \equiv CH$	11.8	33.1	99.8 (20 h)		
4	4-MeOC ₆ H ₄ C≡CH	14.0	42.7	99.8 (24 h)		
5	$4-O_2NC_6H_4C \equiv CH$	0.31^{d}	nd	nd		
6	$N \equiv C(CH_2)_3 C \equiv CH$	3.6	12.0	97.8 (96 h)		
7	$HC \equiv C(CH_2)_4 C \equiv CH$	47.7^{c}	nd	71.2 ^c (8 h)		
8	THPOCH ₂ C≡CH	26.1	76.2	98.0 (9 h)		
9	TsNHCH ₂ CH ₂ C≡CH	nd	97.0^{e}	98.1 ^e (6 h)		
10	CH ₃ C≡CSi(CH ₃) ₃	6.7 ^f	24.3 ^f	100 ^f (66 h)		
11	(CH ₃) ₂ C(OH)C≡CH	nd	nd	80.7 ^g (168 h)		
12	1-ethynylcyclohexene	nd	nd	41.0 ^{g,h} (168 h)		

^{*a*} Unless otherwise specified, using **6** (2 mol %), H₂O (5 equiv), acetone, 70 °C, initial alkyne concentration 0.50 M. ^{*b*} Room-temperature reaction with 5 mol % catalyst; 30.2% after 5.5 h. ^{*c*} Yields of dialdehyde and ynal (double and single hydration products) at 1 and 8 h = 27.9 + 19.8 and 51.6 + 19.6%, respectively. ^{*d*} In addition, 2.1% of corresponding alkane and deactivated catalyst. No further reaction seen. ^{*e*} Product formed as 1:8 mixture of aldehyde and its cyclized form (*N*-tosyl-2-hydroxypyrrolidine). ^{*f*} Product is propanal. ^{*g*} Room-temperature reaction. ^{*h*} 34.2 and 6.9% β , γ and isomerized α , β -unsaturated aldehydes, respectively.

Grotjahn, D. B.; Incarvito, C. D.; Rheingold, A. L. *Angew. Chem. Int. Ed.* **2001**, *40*, 4323; Grotjahn, D. B.; Lev, D. A. *J. Am. Chem. Soc.* **2004**, *126*, 12232.

Palladium-catalyzed hydroamination

✓ Sc	creening of the lig	and		
H ₂ N—	CN +	catalyst, additive THF, 23 °C, 20 h		CN
entry	Pd precursor	ligand	additive	yield ^b
1	1% [Pd(η^3 -allyl)Cl] ₂	2% Xantphos	-	99
2	1% $[Pd(\eta^3-allyl)Cl]_2$	2% Xantphos	2% AgOTF	3
3	2% [(Xantphos)Pd-	-	-	2
	$(\eta^3$ -allyl)]OTf			
4	1% [Pd(η^3 -allyl)Cl] ₂	2% Xantphos	10% HCl	87
5	1% [Pd(η^3 -allyl)Cl] ₂	2% DPEphos	-	7
6	1% [Pd(η^3 -allyl)Cl] ₂	2% DPPF	-	2
7	1% [Pd(η^3 -allyl)Cl] ₂	2% BINAP	-	0
8	1% [Pd(η^3 -allyl)Cl] ₂	2% DPPPent	-	0
9	1% [Pd(η^3 -allyl)Cl] ₂	4% PPh ₃	-	0
10	2% Pd(PPh ₃) ₄	-	10% TFA	22
11^{c}	2% Pd(PPh ₃) ₄	-	10% TFA	11
12	-	-	10% TfOH	0
13	-	-	10% HBF ₄ ^d	0
14	-	-	10% HCl ^e	0

✓ Proposed mechanism

Key findings:

- ✓ Resting state is Pd-allyl complex
- ✓ Large bite-angle facilitates Nu attack (unclear reason)

Johns, A. M.; Utsunomiya, M.; Incarvito, C. D.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 1828.

Overview of M-H insertion pathway

✓ Simplified reaction mechanism

н H-M Н _Nu S_N2 or RE M R R Nu H R M-H insertion М-Н H-M-Nu R^{\prime} R

✓ No literature example

Oops... 404 not found...

✓ Regioselectivity

sp³ C-N reductive elimination?

✓ Two challenges

M-H insertion over M-N insertion

C-N reductive elimination

✓ Stepwise reductive elimination (inversion)

Marquard, S. L.; Rosenfeld, D. C.; Hartwig, J. F. *Angew. Chem. Int. Ed.* **2009**, *49*, 793; Hanley, P. S.; Marquard, S. L.; Cundari, T. R.; Hartwig, J. F. *J. Am. Chem. Soc.* **2012**, *134*, 15281.

Concerted reductive elimination (retention)

SIPr^a

NHAr toluene-d₈, 90 °C

+ (SIPr)₂Pd

Summary

Reaction	Metal	Mechanism	RDS	Selectivity	Scope
Wacker oxidation	Pd	Pd-O insertion	Pd-O insertion	M or AM	AM: styrene or PG
Hydroamination	Ln, Cp	Ln-N insertion	protonolysis?	М	intra
Hydroamination	Ir, DTBM-Segphos	Ir-N insertion	Ir-N insertion	Μ	hexene, indole
Hydroamination	Ru, DPPPent	Nu attack	Nu attack	AM	styrene
Hydroamination	Pd, PNP ligand	Nu attack	protonolysis	Μ	intra
Hydroamination	Rh, Xantphos	Nu attack	protonolysis	Μ	intra
Hydroamination	Rh, P-Ar ligand	Nu attack	Nu attack	Μ	intra
Hydroamination	[lr(cod)Cl] ₂	Nu attack	reductive elimination	Μ	intra
Alkyne hydration	Ru, PN ligand	H+ attack	unclear	AM	alkyl alkyne is better
Hydroamination	Pd, Xantphos	H+ attack	Nu attack	М	styrene

Some (misleading?) clues on ligand choice

Bidentate is better? Asymmetric ligand (electronic, steric) ✓ Nucleophilic attack mechanism

No available site for coordination Lewis acid/base moiety Bite angle is important

Take a bus and meet our interesting neighbor!

Answer to Question 1

- ✓ All of them come from syn attack because only syn attack can move D from 3-position to 2-position
- \checkmark The result in this review is a typo
- ✓ 2-deuterated **D** comes from anti attack, thus anti ratio is only $9\% \times 5\% = 0.45\%$

Answer to Question 2

✓ First order

✓ The concentration of TBHP does not matter as long as there is enough to bind the Pd center. (The wrong assumption we made is steady-state approximation on Pd(TBHP), but actually it is the resting state.)

Answer to Question 3

