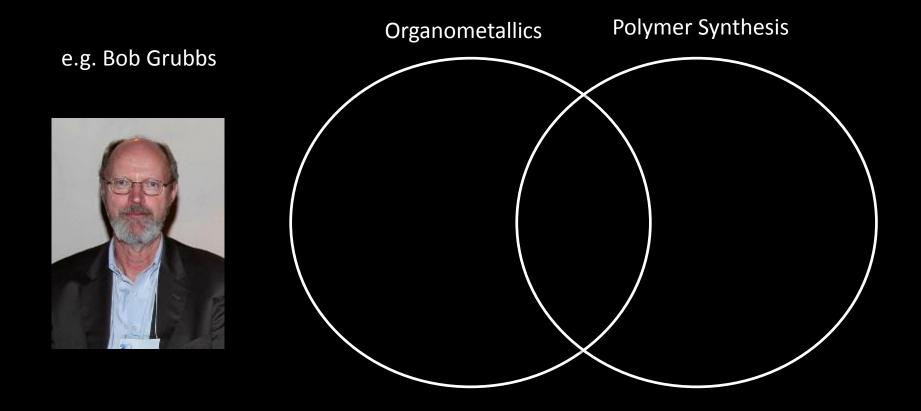
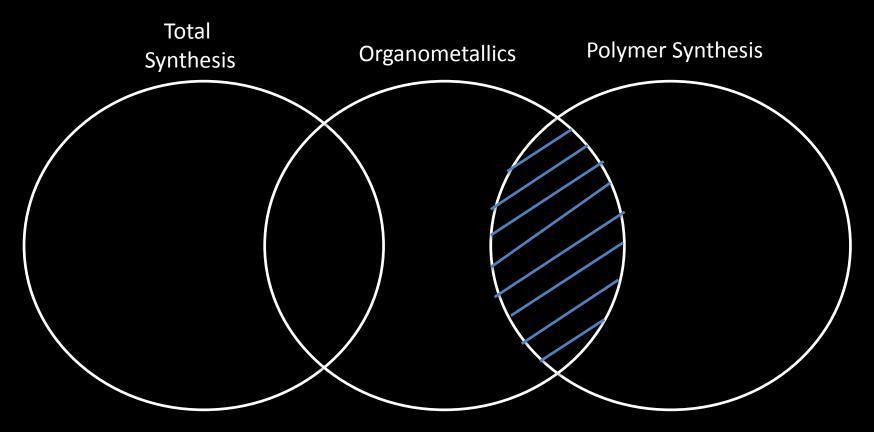

Wednesday Meeting


Controlled Polymerizations

10/15/2014 Ki-Young Yoon


Organometallics : A Friend of Total Synthesis

Organometallics : A Friend of Polymer Synthesis

Organometallics : Still Blue Ocean Area

In theory, every organometallic reaction can branch out into polymerization

Organometallics : Still Blue Ocean Area

Hydrolytic kinetic resolution

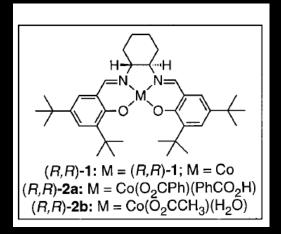

E. Jacobson Science 1997, 277, 936

Table 1. Hydrolytic kinetic resolution of terminal epoxides with water catalyzed by 2b. The values for $k_{\rm rel}$ were calculated using the equation $k_{\rm rel} = \ln[(1 - c)(1 - e)]/\ln[(1 - c)(1 + e)]$, where ee is the enantiomeric excess of the epoxide and c is the fraction of epoxide remaining in the final reaction mixture (4).

$$(\pm)$$
- R (S,S) -2b R $(J$ $+$ H_2O (S,S) -2b R $(J$ $+$ R $(J$ OH OH

		Concer	itration	Time	Epoxide Diol		Diol		
Entry	R	2b (mol %)	Water (equiv)	Time (hours)	ee (%)	lsolated yield (%)	ee (%)	lsolated yield (%)	k _{rel}
1	CH _a	0.2	0.55	12	>98	44	98	50	>400
2	CH ₂ ČI	0.3	0.55	8	98	44	86	38	50
3	(CH ₂) ₃ CH ₃	0.42	0.55	5	98	46	98	48	290
4	(CH ₂) ₅ CH ₃	0.42	0.55	6	99	45	97	47	260
5	Ph	0.8	0.70	44	98	38	98*	39*	20
6	CH=CH ₂	0.64	0.50	20	84	44	94	49	30
7	CH=CH ₂	0.85	0.70	68	99	29	88	64	30

*After recrystallization.

J. Coates J. Am. Chem. Soc 2008, 130, 17658

Ena

the

Ena Cata

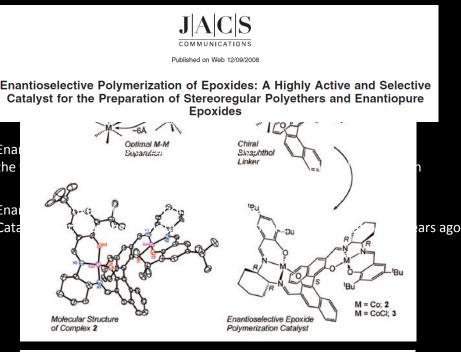


Table 1. Enantioselective Polymerization of Racemic Epoxides Catalyzed by 3/[PPN][OAc]: Measurement of s^a

entry	epoxide subs. (R)	[epox]/ [3]	time (h)	conv. (%) ^b	ее _(SM) (%) ^с	[<i>mm</i>] (%) ^d	ее _(Р) (%) ^е	s-factor ^f	M _n (kg/mol) ^g	M _w /M _n ^g
1	Me	4000	0.25	34	51 (R)	98.6	99.1	370	26.4	1.8
2	Et	1000	0.25	22	29 (R)	98.8	99.2	330	61.4	2.0
3	ⁿ Bu	667	0.33	19	24 (R)	98.6	99.1	260	76.8	2.1
4	Ph	1000	17.0	20	26 (R)	94.4	96.1	63	98.9	1.9

1. Polymerization Mechanism

o Step-growth polymerizationo Chain-growth polymerizationo Step-growth vs. Chain-growth

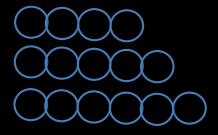
2. Efforts to turn Step-growth polymerization into Chain-growth polymerization

o GRIM polymerization o Pd-catalyzed chain-growth polymerization

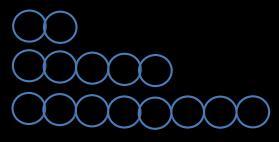
Polymer is a mixture

Polymer is not a pure substance. It is a mixture

Polymer molecular weight

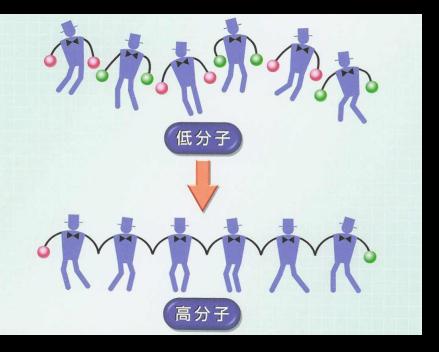

Numbe	r Average M	olecular W $\sum N_i M_i$	eight, M _n	
$\overline{M}_n =$	$\sum_{i} X_{i} M_{i} =$	$\frac{\frac{2}{i}}{\sum_{i} N_{i}}$		
Weight	Average Mo		VV	2
$\overline{M}_w =$	$\sum_{i} W_{i}M_{i} =$	$\sum_{i} w_i M_i$	$=\frac{i}{2}$	
1160	i	$\sum_i w_i$	$\sum_{i} N_{i}M_{i}$	i
PDI = N	1 _w /M _n > 1 (N	/I _w > M _n)		

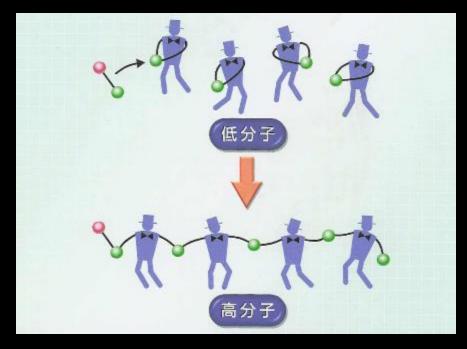
Danny's	Credit	Grade	Credit*Gr ade
PhysOrg	3	4.0 (A)	12
Calculus	2	3.0 (B)	6
History	1	2.0 (C)	2
Mn	(4.0+3.0+2.0) /3	=3	
Mw	(12+6+2)/6	=3.666	

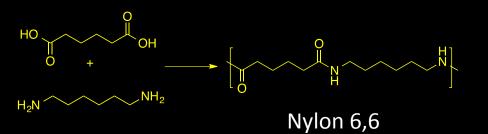

The smaller PDI means the NARROWER distribution of polymer

 $\begin{array}{c} 00000\\ 00000\\ 00000\\ 00000\end{array}$

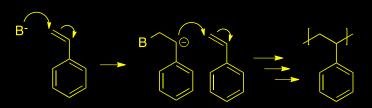
PDI=1



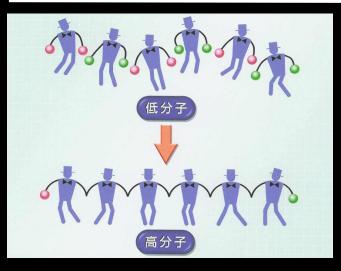

PDI is smaller (>1)


PDI is larger (>1)

Polymer Growing Mechanism

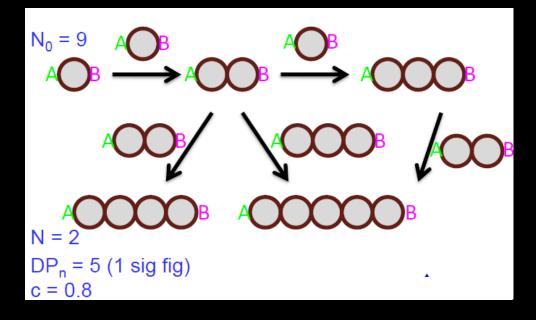


Step-growth polymerization



Chain-growth polymerization

Anionic polymerization

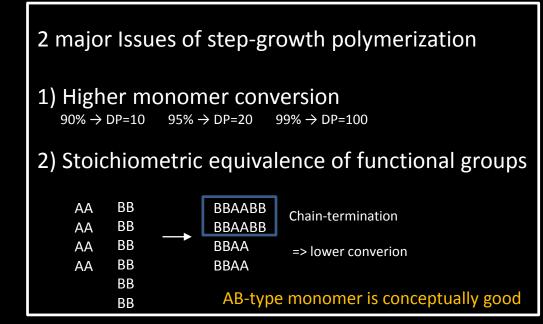

Step-Growth Polymerization

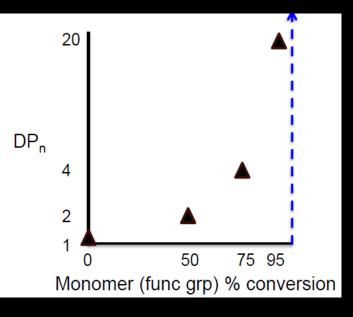
- 2 $0 + 0 \rightarrow 0 - 0$ 3 $0-0+0 \rightarrow 0-0-0$ $o - o - o + o \rightarrow o - o - o - o$ 4 0-0 + 0-0 -> 0-0-0-0 0-0-0-0 + 0 → 0-0-0-0-0 5 o-o + o-o-o → o-o-o-o $0-0-0-0-0 + 0 \rightarrow 0-0-0-0-0-0$ 6 $0-0 + 0-0-0-0 \rightarrow 0-0-0-0-0-0$ $0-0-0 + 0-0-0 \rightarrow 0-0-0-0-0-0$ $0-0-0-0-0-0 + 0 \rightarrow 0-0-0-0-0-0-0$ $0-0 + 0-0-0-0 \rightarrow 0-0-0-0-0-0-0$ $0-0-0 + 0-0-0 \rightarrow 0-0-0-0-0-0-0$ $0-0-0-0-0-0-0 + 0 \rightarrow 0-0-0-0-0-0-0-0$ $0-0 + 0-0-0-0-0 \rightarrow 0-0-0-0-0-0-0-0$

8

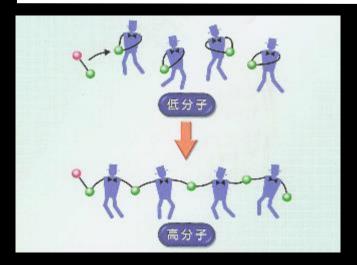
- Connecting one-by-one
- More OrgChem-like polymerization (Any Coupling rxns)

More about step-growth plz

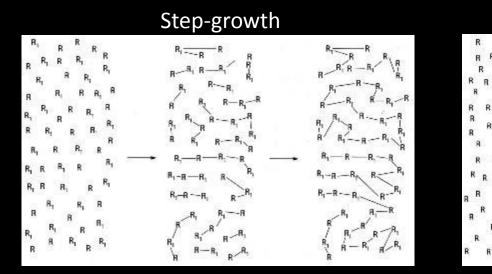


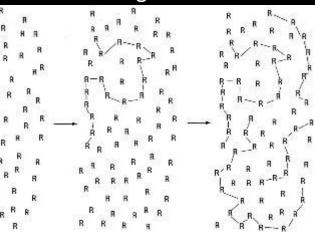

Wallace Carothers

- Father of polymerizations
- Worked at Dupont
- Inventor of Nylon
- Killed himself when 41


$$DP = \frac{1}{1-p}$$
, $PDI = 1+p$

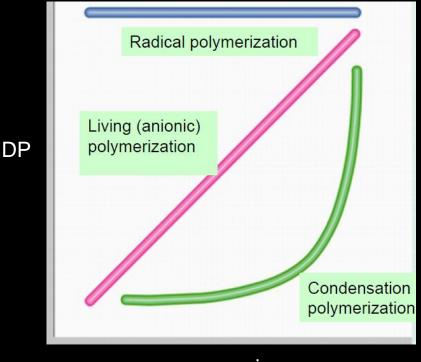
p = monomer conversionDP = Degree of polymerization(DP=5 of polymer has 5 monomer in it)


Chain-Growth Polymerization


(c.f. chain reaction)

 $\begin{array}{ll} \mbox{Initiation}:\mbox{Initiator}+M\rightarrow {P_1}^* & (k_i)\\ \mbox{Propagation}:\mbox{P_1}^*+M\rightarrow {P_x}^* & (k_p)\\ \mbox{Termination}:\mbox{P_x}^*\rightarrow {P_x} & (k_t)\\ \mbox{Side rxn}:\mbox{P_x}^*\rightarrow X\\ \mbox{Chain Transfer}:\mbox{P_x}^*\rightarrow {P_y}^* & (k_{tr}) \end{array}$

Always needs the initiator. Initiators don't have to be catalysts



Chain-growth

More about chain-growth plz

conversion

 $\begin{array}{ll} \text{Initiation}: \text{Initiator} + M \rightarrow P_1^* & (k_i) \\ \text{Propagation}: P_1^* + M \rightarrow P_x^* & (k_p) \\ \text{Termination}: P_x^* \rightarrow P_x & (k_t) \\ \text{Side rxn}: P_x^* \rightarrow X \\ \text{Chain Transfer}: P_x^* \rightarrow P_y^* & (k_{tr}) \end{array}$

Issue of the chain-growth polymerization

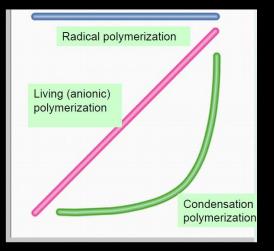
To manipulate k_i , k_p , k_t , k_{tr}

=> For living polymerization

What is living polymerization ??

What is living polymerization

- I. Special (or Ideal) class of chain-growth polymerization where
 - 1. Narrow PDI (<1.2)
 - Molecular weight (M_n) is well-controlled by [Monomer]/[Initiator] or conversion
 - 3. After all consumption of monomer,


further addition of monomer results in continue polymerization

 \rightarrow <u>Block copolymers</u> can be synthesized.

(AAAAAAABBBBBBBBBBBBBCCCCCCCCCCC)

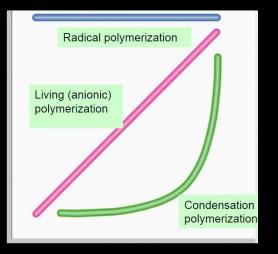
- II. To achieve living polymerization
 - 1. k_p >> k_t
 - 2. k_i/k_p high enough
 - 3. absence of side reactions such as chain transfer reaction

What is living polymerization

 $k_i/k_p >$ high enough $K_p/k_t >$ very high $K_p/k_{tr} >$ very high

We can control MW of polymers

Fast Initiation (ki/kp)


Fast propagation (kp/kt), but not too fast (ki/kp)

Ideally no termination Little termination (kp>>kt)

What is living Controlled polymerization

 $k_i/k_p >$ high enough $K_p/k_t >$ very high $K_p/k_t >$ very high

We can control MW of polymers

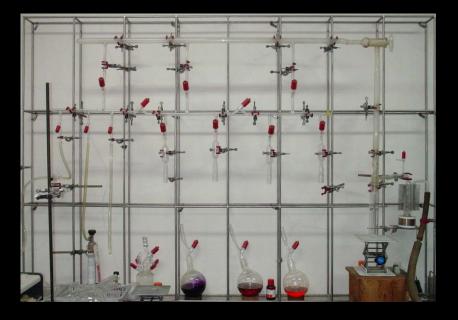
Living = no termination (too ideal) Controlled polymerization is preferred.

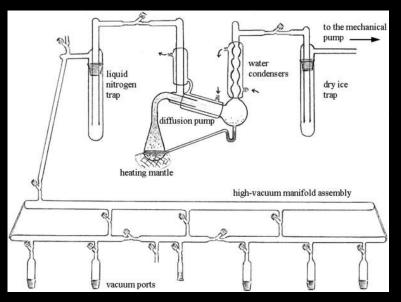
Anionic polymerization is thought of as only polymerization that can be real living. Anionic polymerization can be living polymerization <u>in the absence of moisture</u>

PDIs of Successful anionic polymerizations (normally <1.05)

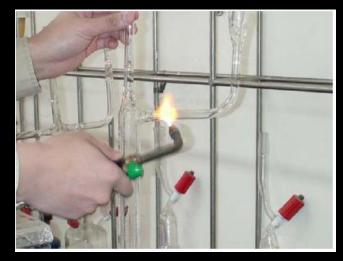
Step-growth vs Chain-growth

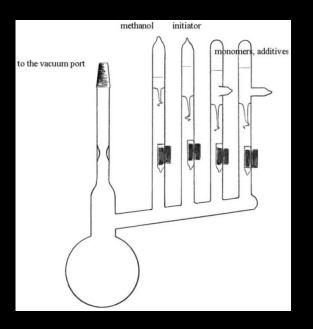
" can you make a nice polymer with MW=5000 ?"	
Step-growth guy says,	$DP = \frac{1}{1-n}$, $PDI = 1+p$
" okay, the MW of my monomer is 500, so what I am supposed to do is just stop the polymerization at the mo	- P
\Rightarrow Practically impossible.	
Chain-growth guy says,	
" okay, the MW of my monomer is 500, So what I am supposed to do is just use my initiator with the ratio of r	nonomer/initiator=10 "

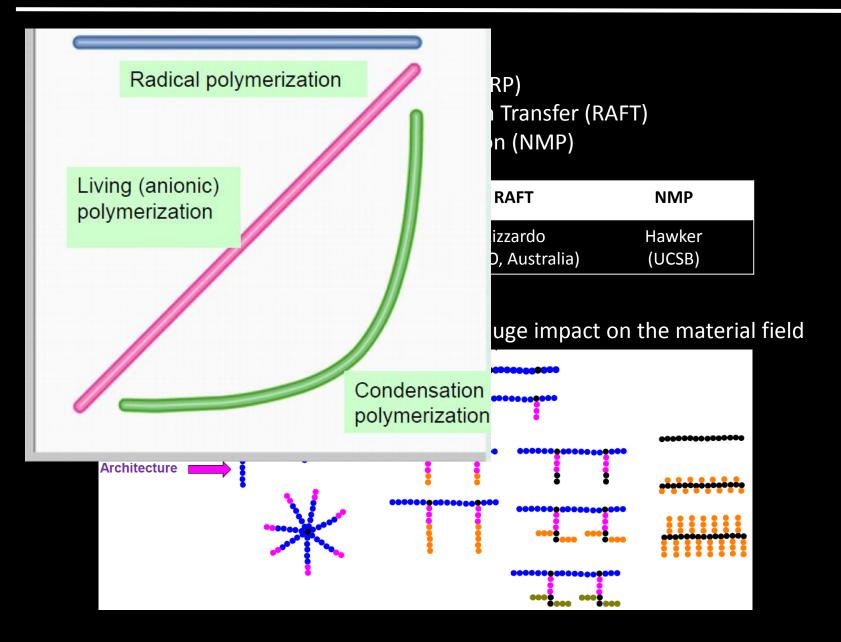

Chain-growth polymerization can control the molecular weight of the polymer \Rightarrow Prediction.


 \Rightarrow Reproducibility

Those who use chain-growth polymerization predict they will have M_n =5000, while those who use step-growth polymerization pray for that.


Predict or Pray?

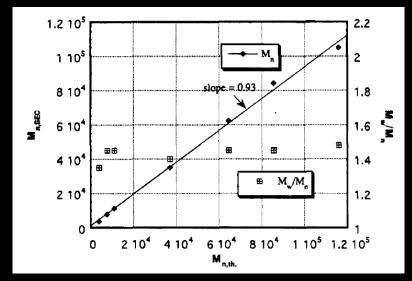

Anionic polymerization : Super Geek Chemistry



Powerful but not synthesist-friendly polymerization

Atom-transfer radical polymerization (ATRP) – maintains low concentration of active radical

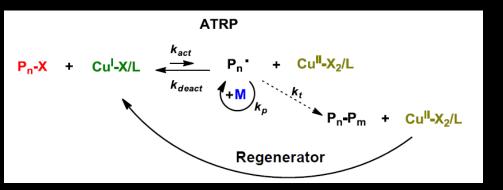
Scheme 1


Initiation:

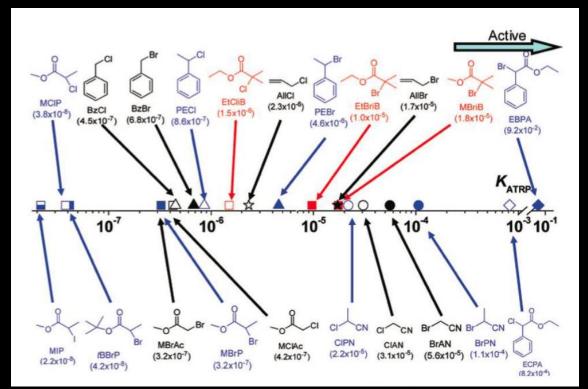
$$\begin{array}{ccccc} \mathbf{R} \cdot \mathbf{C}\mathbf{i} &+& \mathbf{C}\mathbf{u}^{\mathbf{I}}\mathbf{L}_{\mathbf{x}} &\xrightarrow{\quad & = \quad} \left| \begin{array}{cccc} \mathbf{R}^{*} &+& \mathbf{C}\mathbf{I} \cdot \mathbf{C}\mathbf{u}^{\mathbf{\Pi}}\mathbf{L}_{\mathbf{x}} \end{array} \right| \\ & \swarrow^{*+\mathbf{M}} & & & & & & \\ \mathbf{R} \cdot \mathbf{M} \cdot \mathbf{C}\mathbf{I} &+& \mathbf{C}\mathbf{u}^{\mathbf{I}}\mathbf{L}_{\mathbf{x}} &\xrightarrow{\quad & = \quad} \left[\begin{array}{ccccc} \mathbf{R} \cdot \mathbf{M}^{*} &+& \mathbf{C}\mathbf{I} \cdot \mathbf{C}\mathbf{u}^{\mathbf{\Pi}}\mathbf{L}_{\mathbf{x}} \end{array} \right] \end{array}$$

Propagation:

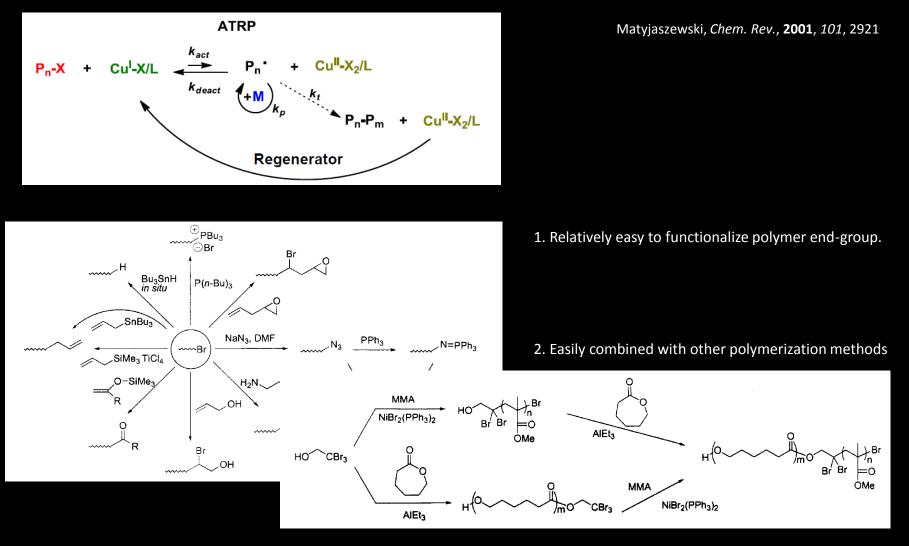
$$P_{i} \cdot Cl + Cu^{I}L_{x} = \left[P_{i} + Cl \cdot Cu^{II}L_{x} \right]$$


$$(+M)_{k_{p}}$$

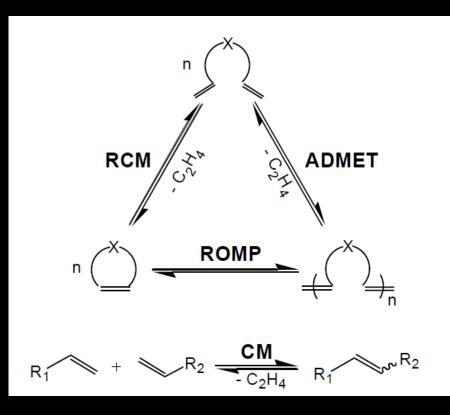
Matyjaszewki JACS 1995, 117, 5614


Nowadays, generally PDI < 1.2

Atom-transfer radical polymerization (ATRP) – maintains low concentration of active radical



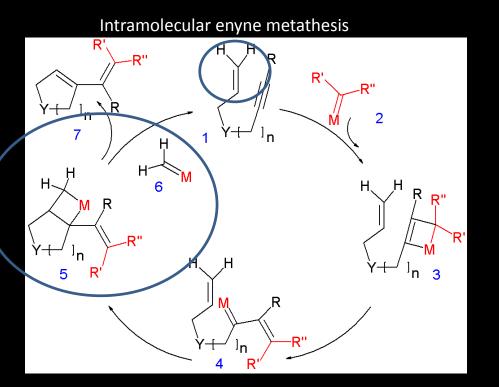
Matyjaszewski, Chem. Rev., 2001, 101, 2921


Initiator – R-X Catalyst – Cu(I)

Atom-transfer radical polymerization (ATRP) – maintains low concentration of active radical

Metathesis polymerization

Conceptually

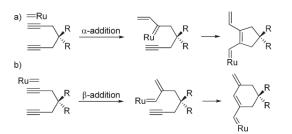

ROMP : chain-growth polymerization

 Catalyst is at the chain end after ring opening

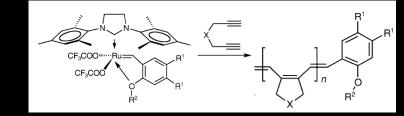
ADMET : step-growth polymerization

- Catalyst is gone after cross metathesis

Relatively recent Metathesis cyclopolymerization

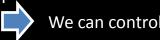

Diyne metathesis cyclopolymerization

Schrock, J. Am. Chem. Soc. **1994**, 116, 2827 Buchmeiser, *Macromolecules* **2002**, *35*, 9029 Buchmeiser, *ACIEE* **2003**, *42*, 5965 Tae-Lim Choi, J. Am. Chem. Soc. **2011**, 133, 11904


Scheme 1. Cyclopolymerization of 1,6-Heptadiyne Derivatives: (a) Five-Membered-Ring Unit Produced from α -Addition of a Metal Carbene and (b) Six-Membered Ring from β -Addition

Metathesis cyclopolymerization

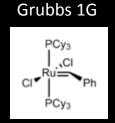
Scheme 1. Cyclopolymerization of 1,6-Heptadiyne Derivatives: (a) Five-Membered-Ring Unit Produced from α -Addition of a Metal Carbene and (b) Six-Membered Ring from β -Addition

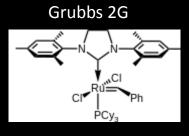


Buchmeiser, ACIEE 2003, 42, 5965

<i>Table 1:</i> Results of the polymerization with catalysts 1–4 . ^[a]						
Poly(acetylene)	Cat.	Solvent	M _n (theor.)	M_n (LS)	$M_{\rm w}$ (LS)	PDI (LS)
poly(DEDPM) ₁₀₀	1	CH_2CI_2	11975	10400	16800	1.62
poly(ECMCH) ₅₀	1	CH_2Cl_2	17485	11 100	28700	2.59
poly(DEDPM)₅	2	CH_2Cl_2	1389	5 600	7300	1.30
poly(DEDPM) ₁₀	2	CH_2Cl_2	2571	7 000	11000	1.57
poly(DEDPM) ₃₀	2	CH_2Cl_2	7296	13 100	21 400	1.63
poly(DEDPM) ₅₀	2	CH_2Cl_2	12021	16200	26400	1.63
poly(DEDPM) ₇₀	2	CH_2Cl_2	16747	20 000	22000	1.10
poly(DEDPM) ₁₀₀	2	CH_2Cl_2	23835	27 500	42400	1.54
poly(ECMCH) ₅₀	2	CH_2Cl_2	17517	13 000	22400	1.72
poly(DEDPM) ₅₀	3	H ₂ O	11975	7 700	16000	2.08
poly(ECMCH) ₅₀	3	H ₂ O	17485	8100	10400	1.28
poly(DEDPM) ₅₀	4	H ₂ O	12021	9 500	13100	1.38
poly(DEDPM) _{1∞}	4	H₂O	23835	12 700	15600	1.23

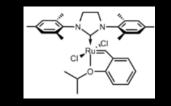
 $k_i/k_p >$ high enough $K_p/k_t >$ very high $K_p/k_t >$ very high

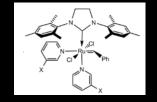

We can control MW of polymers


Slow initiation => ki/kp isn't high

=> broad MW distribution

=> PDI is large (>1.3)

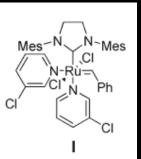

Metathesis cyclopolymerization

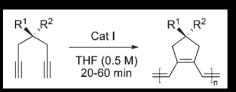

Slow initiator

Hoveyda-Grubbs 2G

Slower initiator with good thermal stability

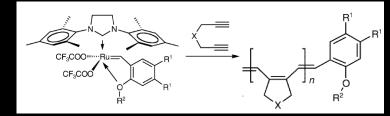
Grubbs 3G




Fast initiator

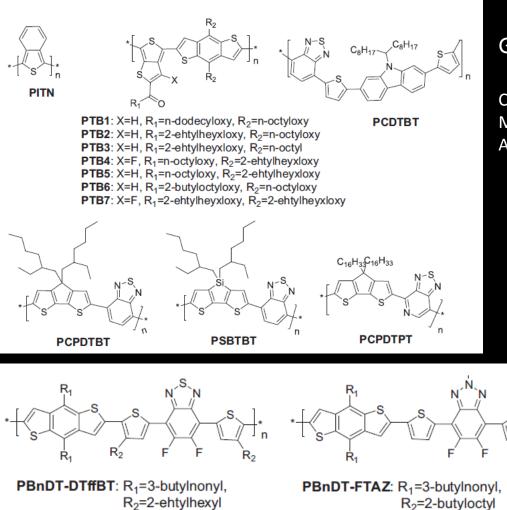
Widely used only in polymer fields

Metathesis cyclopolymerization


Tae-Lim Choi, J. Am. Chem. Soc. 2011, 133, 11904

entry	monomer	[M]/[I]	temp (°C)	$M_{\rm n}({ m kDa})^a$	PDI ^a	yield (%) ^b
,	1					
1	1	100	RT	41.7	1.81	87
2	1	25	0	12.3	1.09	>99
3	1	50	0	25.4	1.19	81
4	1	100	0	40.6	1.16	97
5	1	150	0	54.4	1.44	94
6	2	25	0	14.6	1.06	93
7	2	50	0	27.3	1.10	93
8	2	100	0	46.7	1.28	96
9	2	150	0	57.6	1.29	>99
10	3	25	0	14.3	1.06	85
11	3	50	0	24.0	1.14	80
12	3	100	0	34.9	1.15	>99
13	3	150	0	50.7	1.28	87
14	4	25	-10	8.9	1.13	97
15	4	50	-10	19.3	1.11	79
16	4	100	-10	39.6	1.2	89
17	4	150	-5	54.9	1.43	87

Buchmeiser, ACIEE 2003, 42, 5965


Table 1: Results of t	he polyme	rization with ca	atalysts 1–4 . ^[a]			
Poly(acetylene)	Cat.	Solvent	M _n (theor.)	M_n (LS)	$M_{\rm w}$ (LS)	PDI (LS)
poly(DEDPM) ₁₀₀	1	CH_2Cl_2	11975	10400	16800	1.62
poly(ECMCH) ₅₀	1	CH_2CI_2	17485	11100	28 700	2.59
poly(DEDPM)₅	2	CH_2CI_2	1389	5 600	7300	1.30
poly(DEDPM) ₁₀	2	CH_2CI_2	2571	7 000	11000	1.57
poly(DEDPM) ₃₀	2	CH_2CI_2	7296	13 100	21 4 0 0	1.63
poly(DEDPM) ₅₀	2	CH_2CI_2	12021	16200	26400	1.63
poly(DEDPM) ₇₀	2	CH_2Cl_2	16747	20 000	22000	1.10
poly(DEDPM) ₁₀₀	2	CH_2CI_2	23835	27 500	42400	1.54
poly(ECMCH) ₅₀	2	CH_2CI_2	17517	13 000	22400	1.72
poly(DEDPM) ₅₀	3	H ₂ O	11975	7 700	16000	2.08
poly(ECMCH) ₅₀	3	H ₂ O	17485	8100	10400	1.28
poly(DEDPM) ₅₀	4	H ₂ O	12021	9 500	13100	1.38
poly(DEDPM) ₁₀₀	4	H ₂ O	23835	12 700	15600	1.23

Fast initiation

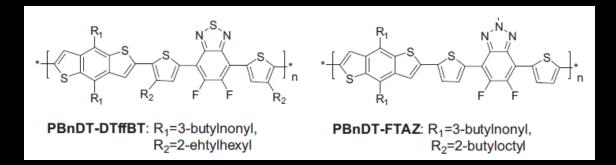
Polymer with narrow MW distribution

Step-growth polymerization

Advantage of the step-growth polymerization

Good for structural diversity

Currently,


Most of the <u>conducting polymers in organic electronics</u> Are produced in the step-growth manner.

Stille Kumada Suzuki

Step-growth polymerization for organic electronics?

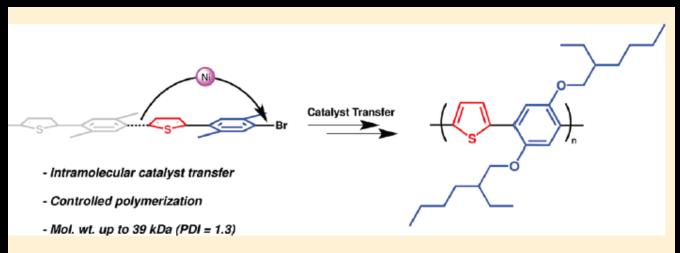
Low bandgap conducting polymers = DA repeating unit

(D – electron-rich aromatic ring A – electron-poor aromatic ring)

Alternating copolymers are made in Step-growth manners. Reproducibility is one of the high priorities in Organic electronics.

Unpredictable polymerization is currently being used for organic electronics.

Possible to Change Step-growth polymerization into chain-growth polymerization ?


(Intrinsically) Step-growth

Stille Kumada Suzuki

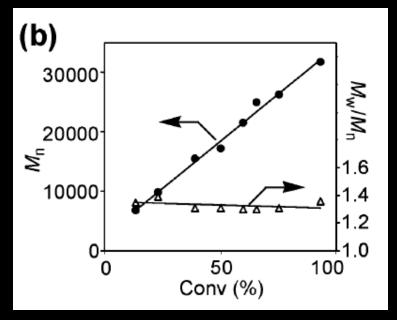
Intrinsically chain-growth

ROMP Typical Radical polymerization Anionic polymerization

What if ?

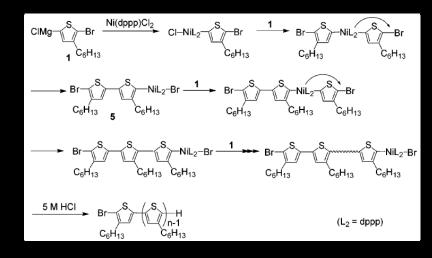
Apple vs Samsung


King of Innovation



King of Renovation

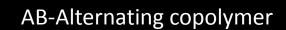
GRIM method


Grignard metathesis polymerization

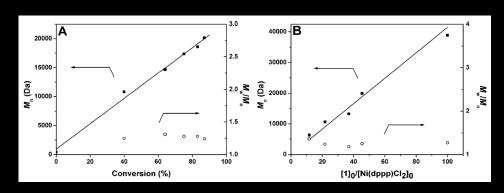
Chain-growth polymerization kinetics

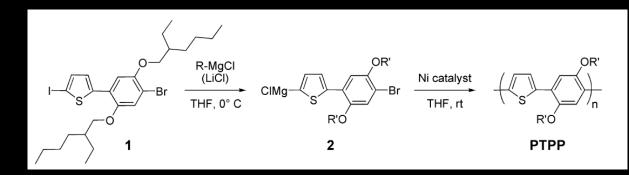
McCullough *J. Chem. Soc., Chem. Commun.* 1992, 70 McCullough *Adv. Mater.* 1999, 3, 250 Yokozawa Macromolecules, 2004, 37, 1169 Yokozawa *JACS*, 2005, 127, 17542

Catalyst Transfer


Reductive elimination followed by intramolecular oxidative addition

Electron density of arene may work as a directing group


GRIM method


Grignard metathesis polymerization

Bielawski Macromolecules, 2012, 45, 2321

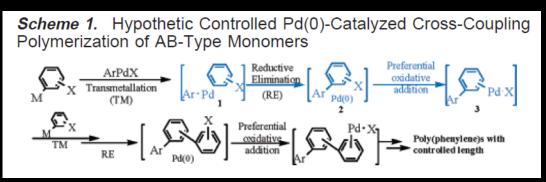
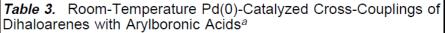


Table	1. Polyconder	nsation of 2	with Vario	us Ni Ca	talysts ^a
entry	catalyst	equiv of LiCl	Grignard reagent	$M_{\rm n}^{\ b}$	$M_{ m w}/M_{ m n}^{\ b}$
1	Ni(dppe)Cl ₂	0	ⁱ PrMgCl	12 000	2.03
2	$Ni(dppp)Cl_2$	0	ⁱ PrMgCl	3 700	1.32
3	Ni(dppe)Cl ₂	1.0	ⁱ PrMgCl	12 000	1.74
4 ^c	$Ni(dppp)Cl_2$	1.0	ⁱ PrMgCl	14 500	1.33
5	Ni(dppe)Cl ₂	1.0	^t BuMgCl	15 200	2.03
6	$Ni(dppp)Cl_2$	1.0	^t BuMgCl	10 500	1.53

In 2005,

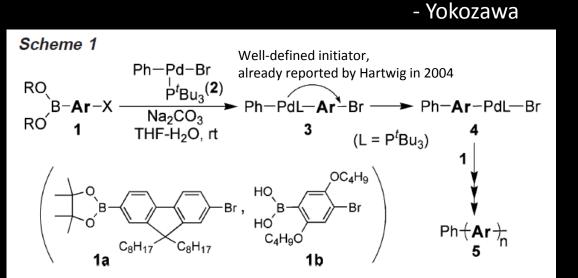
Scheme 2. Pd(0)-Catalyzed Cross-Couplings of Dihalobenzenes with 1 equiv of Arylboronic Acids

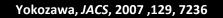


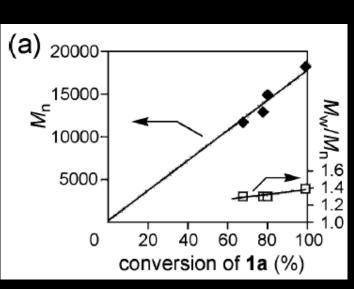
Qiao-Sheng Hu, JACS, 2005, 127, 10006

In 2005,

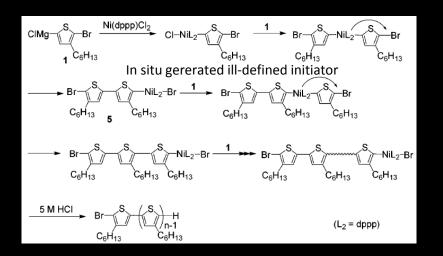
		perature Pd(0)-Cat vith Arylboronic Ac		Couplings of
C x	+ (HO) ₂ B Ar (1 equiv.)	$\frac{2.5\% \text{ Pd}_2(\text{dba})_3/10\% t}{\text{K}_3\text{PO}_4, \text{ THF, r.t., 20}}$		Di Ar
Entry	Dihalide	Ar-B(OH) ₂	Mono : Di ^b	Yield(%) ^c
1	\mathbb{O}_{Br}^{Br}	B(OH) ₂	<1 :>99	96
2	\mathbb{O}_{Br}^{Br}	- B(OH) ₂	2:98	98
3	$\bigcirc_{\rm Br}^{\rm Br}$	MeO $-$ B(OH) ₂	<1 :>99	96.5
4	\mathbb{O}_{Br}^{Br}	B(OH)2	4 : 96	90
5	$\int Br Br Br$	B(OH) ₂	<1 :>99	94
6	$\int Br Br Br$	B(OH)2	<1 :>99	92
7	$F_{\rm F} \underset{\rm Br}{{}_{\rm Br}} $	B(OH)2	<1 :>99	78
8	$MeO_{MeO} \square Br_{Br}$	B(OH)2	<1 :>99	82
9		B(OH) ₂	> 99 : < 1	99 d
10		B(OH)2	21 : 79	72

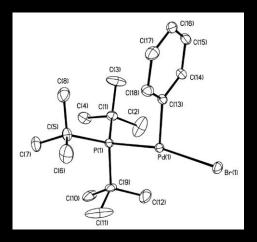

Qiao-Sheng Hu, JACS, 2005, 127, 10006



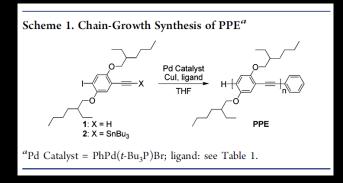

Х	Ar. _X +	(HO) ₂ B Ar' $\frac{2}{-1}$ (1 equiv.)	.5% Pd ₂ (dba) ₃ /10% <i>t</i> -B K ₃ PO ₄ , THF, r.t., 20 h	u ₃ P→ Ar'· ^{Ar} . Mono	+ Ar' · Ar`Ar' Di
_	Entry	Dihalide	Ar-B(OH) ₂	Mono : Di ^b	Yield(%) ^c
	1		B(OH)2	0.3 : 99.7 (1 : 332)	96
	2	$_{\rm Br} \bigcirc_{\rm Br}$	$B(OH)_2$	1.5 : 98.5	91
	3	$_{\rm Br} \bigcirc_{\rm Br}$	$ B(OH)_2$	1:99	86
	4	I-C-I	$ B(OH)_2$	3:97	43
	5	Br – Br	$ B(OH)_2$	6 : 94	23
	6	$_{\mathrm{Br}}\mathcal{I}_{\mathrm{S}}^{\mathrm{A}}_{\mathrm{Br}}$	$ B(OH)_2$	9 : 91	80

In 2007,


"Now my turn. Thank you for your nice study, Dr. Hu"



Chain-growth kinetics


In 2013,

"Now my turn. Thank you for your idea, Dr. Yokozawa"

- Bielawski

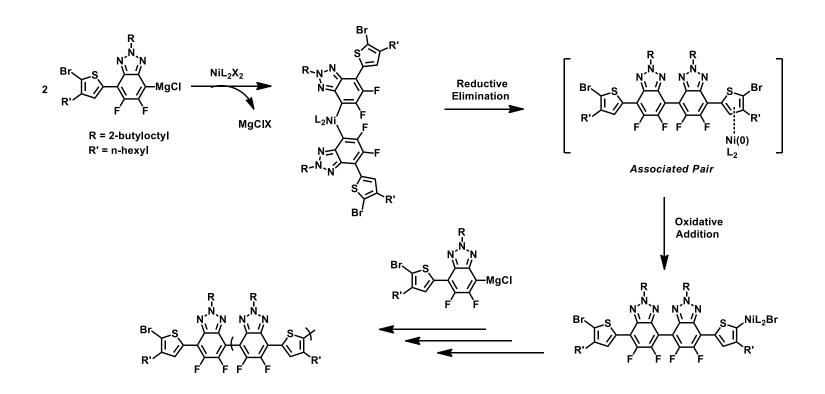
Bielawski, JACS, 2013, 135, 4984

Why not Stille??

10.0- A 8.0-	-3.5	12.0- B 10.0-	-3.5
(e 6.0- UX) U4.0-	-3.0	8.0- 8.0- 9 6.0-	-3.0
	-2.0		-2.0
2.0	· · · · · · · · · · · · · · · · · · ·	2.0-	1.6
0 20 40 Monomer Co	60 80 100 onversion (%)	0 10 20 [Monomer]	30 40 50 0/[Catalyst]0

Chain-growth kinetics

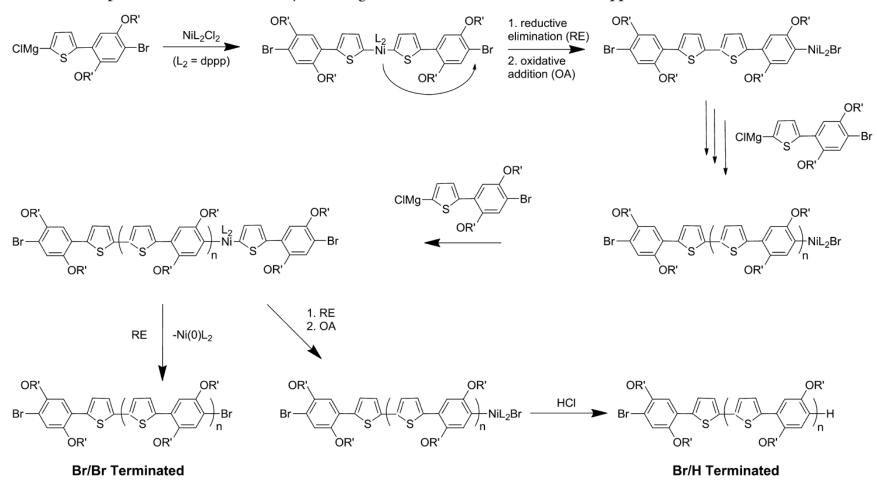
Table 1. Syntheses of PPEs under Various Conditions a					
entry ^b	CuI (mol %)	ligand (mol %)	M_n^c (kDa)	$\stackrel{ ext{ }}{\left(M_{ ext{w}}/M_{ ext{n}} ight) }$	yield (%) ^d
1	20	$PPh_3(20)$	10.8	1.28	58
2	20	PCy ₃ (20)	5.0	1.31	26
3	20	$P(2-furyl)_3(20)$	17.2	1.69	99
4	20	$P(t-Bu)_3$	6.8	1.60	64
5	0	$PPh_3(20)$	7.6	1.54	63
6	20	none	5.6	1.47	30
7	20	$PPh_3(20)$	14.4	1.47	94
8	10	$PPh_3(10)$	11.0	1.34	88
9	10	$PPh_3(15)$	10.0	1.38	72
10	2	$PPh_3(2)$	3.6	1.43	37

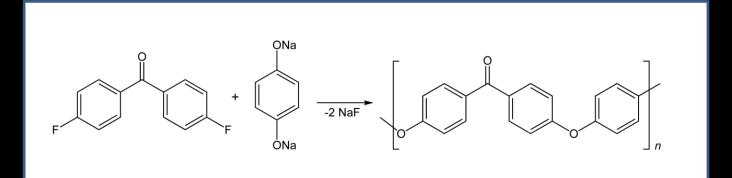

Initiation step is transmetallation step, which is RDS of C-C coupling.

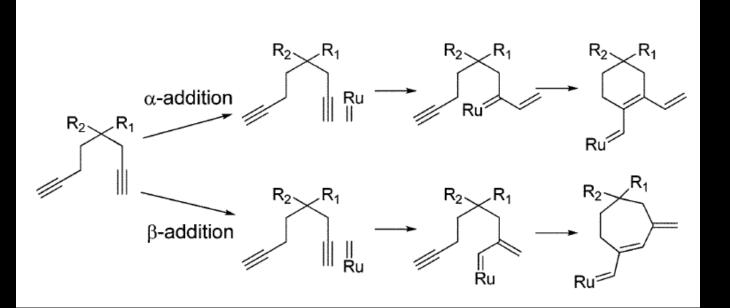
ki/kp should be not high

DA-alternating copolymer

Coming soon,


Chain-growth polymerization kinetics


Electron-poor arene ring also have directing ability?


Now, Polymer Chemists are kind of responsible.

Keep your eyes on polymerizations

Scheme 2. Proposed Mechanistic Pathways Leading to the Formation of H/Br end-Capped PTPP

