

Hydroacylation and Related Topics

Dong Group Seminar

Brandon Reinus

Wed, Sept. 5th 2012

- Looking at the reaction, it is a highly atomeconomical approach to synthesizing ketones
- Umpolung (ex: deprotonating dithioacetals)
- Using acrylate derivatives generates a 1,4 diketone relationship, a hard relationship to establish using classical organic synthesis.

Presentation Overview

- 1. Hydroformylation (extremely brief)
- 2. Rh-Catalyzed Hydroacylation
 - Intramolecular
 - Intermolecular
 - Other
- 3. NHC Catalyzed Hydroacylation
 - Benzoin reaction
 - Stetter reaction
 - other

Part 1 : Background

Reppe

Roelen Science of Synthesis, Stereoselective Synthesis 1, 2011, pg.409

Hydroformylation

H(CO)Rh(PPh3)3

Part 2: Rh-Catalyzed Hydroacylation

Decarbonylation can be surpressed by using high pressures of ethylene or CO or by generating a *metallacycle*

Historical Reactions

*Trimethyl phosphine is slow to dissociate

*Also isolated ethylene insertion products

Larock (1980)

72%

Chemical Reviews, 2010, p. 725

Intramolecular Reactions

Table 1. Scope of Bosnich's Cationic Rh(I) Cyclizations^a

Tandem Reaction:

Organometallics 1988, 7, 936-945 Angew Chem, Int. Ed. 2003, 42, 2385

 a [Rh(dppe)]₂(ClO₄)₂, CD₃NO₂, 20 °C. b Determined by GC and $^1\rm H$ NMR methods. o65 °C.

Chem reviews 2010, p.725

Diastereo and Enantioselective

2	R H (lig CH ₂	and)]ClO ₄ (4 mol %) Cl ₂ or acetone, rt	° R
entry	R	ligand	ee (%)
$1^{a,b}$	Me	(S,S)-MeDuphos	94
$2^{a,b}$	iPr	(S,S)-MeDuphos	96
$3^{a,b}$	cyclopentyl	(S,S)-MeDuphos	96
4^c	tBu	(S)-BINAP	>99
5^c	SiMe ₃	(S)-BINAP	>99
6 ^{<i>c</i>}	Ph	(S,S)-chiraphos	78
7^c	4-MeO-Ph	(S,S)-chiraphos	75
8 ^c	C(O)Me	(S)-BINAP	87
9^c	C(O)Ph	(S)-BINAP	94
10^{b}	CO_2Et	(S)-BINAP	>99
11^{b}	CO ₂ <i>i</i> Pr	(S)-BINAP	>99

 $^{\it a}\, PF_6^{\, -}$ salt (5 mol %) used. $^{\it b}\, Acetone. \ ^{\it c}\, CH_2Cl_2.$

Application

Chem reviews 2010, p.725

Intermolecular Hydroacylation

Aldimines

Chem reviews 2010, p.725

Stereoselective Intermolecular reactions

Very limited in scope, still needs a lot of work

Pure Appl. Chem. Vol. 83, p. 577, 2011

Alkynes Intramolecular

Alkynes Intermolecular

Application:

Chem reviews 2010, p.725 Angew. Chem. Int. Ed. 2011, 50, 10657

Few examples, C-O bond formation

Chem reviews 2010, p.725 Angew. Chem. Int. Ed. 2010,49,6026-6027

My take:

Intramolecular- start with cationic or other coordinatively unsaturated Rh(I)

Intermolecular

- Chelation- toss-up both are used in the literature, see if anyone has used similar substrates, if not lean towards starting with cationic Rh(I)
- Aldimines start with Wilkinson's catalyst or other neutral Rh (I)

Part 3; NHC Catalyzed RXNS

Benzoin Condensation NHC-Catalysis to Uncommon Electrophiles Biju et al.

Accounts of Chem. Res. 1182-1195, 2011

44, No. 11

Extending NHC-Catalysis to Uncommon Electrophiles Biju et al. Stetter Reaction

Michael acceptors with beta substituents usually are bad reaction partners

Ciganek, Synthesis, 1995, 1311 Accounts of Chemical Research, 2011, 1182

1188 = ACCOUNTS OF CHEMICAL RESEARCH = 1182-1195 = 2011 = Vol. 44, No. 11 1190 = ACCOUNTS OF CHEMICAL RESEARCH = 1182-1195 = 2011 = Vol. 44, No. 11

Metal Vs Organic

Metals:

- Have to worry about decarbonylation
- Rh is expensive, other metals are not as well documented
- Enantioselective reactions are pretty straightforward
- Screening catalysts is pretty straightforward

NHC:

- Can react with a wider range of substrates (benzoin reaction, stetter, and other substrates)
- Made from very accessible materials.
- Catalyze many transformations, so you have to be aware of possible side reactivity, or use that to your advantage..
- Have to find an NHC that works for you

Thank You

Questions for Me?

Assume Aq. Workup

Questions for You..

C-C meets C-H formaldehyde and acetaldehyde

