Dehydrogenation of Alkanes

Zhiqian "Wallace" Wang 02-08-2012

Contents:

- Introduction
- Dehydrogenation of Alkanes by Pincer Iridium Complexes
- Alkane Metathesis
- Dehydrogenation Involving Heteroatoms
- Conclusion

Introduction: Dehydrogenation of Alkanes

Early Work: From 1970s

Crabtree: Catalyst = $[Ir(PR_3)_2(\kappa^2-O_2CC_2F_5)_2H_2]^+ R = Cy \text{ or } C_6H_4CF_3$ 35 turnovers with acceptor; 35 turnovers without acceptor in open reflux Felkin: Catalyst = $(i-Pr_3P)_2IrH_5$, $[(\rho-FC_6H_4)_3P]_2IrH_5$, or $[(\rho-FC_6H_4)_3P]_3RuH_4$ 45–70 turnovers with acceptor

Dehydrogenation of Alkanes by Pincer Iridium Complexes

1996: Jensen

82 turnovers/h at 150°C, 12 turnovers/min at 200°C no observable decomposition over one week at 200°C

J. Am. Chem. Soc. 1997, 119, 840

Angew. Chem. Int. Ed. 2001, 40, 3750 - 3781

J. AM. CHEM. SOC. 2004, 126, 1804-1811

The first example of efficient acceptorless dehydrogenation

Goldman:

close to 1000 turnovers

Chem. Commun. 1997, 2273 Chem. Commun. 1999, 655 Scheme 1. Proposed Mechanism of n-Alkane/TBE Transfer Dehydrogenation by 3-H₂

5-H₄

Catalysts 3 and 5 show high kinetic selectivity for dehydrogenation of the terminal position of n-alkanes to give a-olefins. This regioselectivity holds great promise with respect to the formation of valuable a-olefins and products derived from them in tandem catalytic systems.

But --- isomerization

Figure 1. Proposed mechanism of both transfer-dehydrogenation of *n*-octane and octene-isomerization catalyzed by the (PCP)Ir catalysts.

10 J. Am. Chem. Soc. 1999, 121, 4086

Table 1. Octene Distributions (Concentrations in mM) from Transfer-Dehydrogenation of *n*-Octane Catalyzed by **1** or **2** Using Various Hydrogen Acceptors. All Runs Conducted at 150 $^{\circ}$ C with 1.0 mM Catalyst in *n*-Octane Solution

cat ^a	accep	min	1-oct	trans-2	cis-2	other	total	%
2	nbe ^b	5	11	0.5	0.6	0	12	91
	0.2 M	10	23	4	3	0	30	76
		30	40	45	43	3	132	30
		60	6	82	40	63	208	3
2	nbe	5	8	0	0	0	8	>90
	0.5 M	10	19	2	1	0	22	87
		30	59	56	40	0	154	38
		60	59	105	71	3	238	25
2	tbec	5	21	3	3	0	27	78
	0.5 M	10	27	6	6	0	40	68
		30	44	65	45	1	155	28
		60	41	103	78	19	250	16
2	1-dec	10	10	0	0	0	10	>90
	0.5 M	30	43	31	21	0	95	45
		60	10	64	40	13	134	8
1	tbe	6	10	0	0	0	10	>90
	0.2 M	15	18	19	8	0	45	40
		30	20	41	20	0	81	25
		60	18	47	26	0	91	20
1	nbe	15	23	4	2	0	29	79
	0.5 M	30	27	7	3	0	37	73
		60	30	15	5	0	50	60
1	$1 \text{-} \text{dec}^d$	15	13	0	0	0	13	>95
	0.5 M	30	34	1	0.6	0	36	95
		60	74	7	4	0	86	87
		90	94	9	9	0	111	84
		120	97	32	14	0	143	68

^{*a*} cat = catalyst; accep = acceptor; 1-oct = 1-octene; other = (other octenes + 2 × [dienes]); $\% = 100 \times [1\text{-octene}]/\text{total}$. ^{*b*} Norbornene. ^{*c*} *t*-Butylethene. ^{*d*} 1-Decene.

Mechanism of (PCP)Ir-Catalyzed Acceptorless Dehydrogenation of Alkanes

Rate determine step : H₂ loss

A Combined Computational and Experimental Study

2002: Karsten Krogh-Jespersen* and Alan S. Goldman* alkane + acceptor $\xrightarrow{\text{catalyst}}$ alkene + $H_2 \bullet$ acceptor (transfer) (1) alkane $\xrightarrow{\text{catalyst}}$ alkene + H₂† ("acceptorless") (2) $(PCP)IrH_2 + RH \rightarrow (PCP)Ir + H_2 + RH$ (3a) $(PCP)Ir + H_2 + RH \rightarrow (PCP)Ir(R)(H) + H_2$ (3b)Dissociative (**D**) pathway $(PCP)IrH_2 + RH \rightarrow [(PCP)IrH_3R]$ (4a) $[(PCP)IrH_3R] \rightarrow (PCP)Ir(R)(H) + H_2$ (4b)Associative (A) pathway

Overall Reaction:

$(PCP)IrH_2 + RH \rightarrow (PCP)Ir(R)(H) + H_2$

J. AM. CHEM. SOC. 2002, 124, 11404-11416 13

 $(PCP)IrH_2 + RH \rightarrow (PCP)Ir + H_2 + RH \qquad (3a)$

 $(PCP)Ir + H_2 + RH \rightarrow (PCP)Ir(R)(H) + H_2 \qquad (3b)$

Dissociative (**D**) pathway

Ir(I) pathway is not accessible in the Cp*Ir case, and the alternative of \acute{o} -bond-metathesis by Cp*Ir(III) was calculated to be less favorable than the Ir(V) pathway

Vs.

 $(PCP)IrH_2 + RH \rightarrow [(PCP)IrH_3R]$ (4a)

 $[(PCP)IrH_{3}R] \rightarrow (PCP)Ir(R)(H) + H_{2}$ (4b)

Associative (A) pathway

Bergman & Hall: Cp*lr(III) + C−H —→ Ir(V)

high entropy under these conditions of the free H2 molecule

A wide range of modified PCP pincer ligands with varying electronic and steric properties have been explored synthetically and computationally

Ru (12)

16

(R4PCP)Ir

The p-methoxy-substituted complex (MeO-tBu4PCP)IrH2 (6a-H2) gave a 2-3-fold increase in turnovers for acceptorless dehydrogenation of cyclodecane as compared to 3-H2.

The sterically less bulky (MeO-Pr4PCP)IrH4(6b-H4) was extremely effective in the acceptorless dehydrogenation of cyclodecane, with a total of 3050 turnovers obtained after 72 h under reflux conditions (201 °C)

Thermally very stable:

Complex 7a-H2 tolerated reaction temperatures up to 250 °C

Complex 7a-H2 significantly less reactive than 3-H2 under comparable conditions

One of the most notable modifications of the PCP ligand: Brookhart and Jensen

J. AM. CHEM. SOC. 2004, 126, 1804-1811 18

Table 1. TONs for the Transfer Dehydrogenation of COA and TBE Catalyzed by 4a-f and 11 Plus NaO*t*Bu Obtained at 200 °C and the COE:1,3-COD Product Ratio^{*a*}

	4 (p-X=)							
	a MoO	b Mo	С Ц	d F	e C.E.	f Ar ^F	11 ⊔	
	MeO	INIE		1	061 5	AI		
8 min	806	811	922	840	1150	1162	156	
$(COE/COD)^{b}$	(100/0)	(100/0)	(99/1)	(99/1)	(94/6)	(94/6)	(100/0)	
31 min	1226	1087	1194	1108	1401	1424	198	
$(COE/COD)^b$	(93/7)	(95/5)	(93/7)	(93/7)	(90/10)	(89/11)	(100/0)	
178 min	1564	1356	1514	1380	1699	1735	216	
$(COE/COD)^{b}$	(86/14)	(87/13)	(86/14)	(85/15)	(83/17)	(82/18)	(100/0)	
918 min	1674	1413	1512	1465	1863	1893	212	
$(COE/COD)^{b}$	(83/17)	(87/13)	(86/14)	(85/15)	(80/20)	(79/21)	(100/0)	
2398 min	1904	1484	1583	1530	2041	2070	227	
$(COE/COD)^b$	(81/19)	(86/14)	(84/16)	(84/16)	(78/22)	(76/24)	(100/0)	
6170 min	2017	1488	1609	1605	2175	2186	230	
$(COE/COD)^b$	(78/22)	(86/14)	(83/17)	(83/17)	(75/25)	(75/25)	(100/0)	
20 305 min	2047	1485	1603	1633	2170	2210	230	
$(COE/COD)^b$	(78/22)	(85/15)	(83/17)	(82/18)	(75/25)	(75/25)	(100/0)	

^{*a*} Average of three runs, based on conversion of TBE determined by ¹H NMR, 3030 TO = 100% conversion, all reactions performed under an argon atmosphere. ^{*b*} Determined by ¹H NMR, the sum of COE and COD double bonds equals TON of TBE within 2% difference.

х

MeO

Me

н

F

 C_6F_5

Ar^F

4f

(R4POCOP)Ir

(tBu4PCP)Ir reversibly reacts with TBE to give a vinylic C-H addition Product (tBu4POCOP)Ir forms a π -coordinated complex

Scheme 1. Proposed Mechanism of *n*-Alkane/TBE Transfer Dehydrogenation by $3-H_2$

Scheme 3. Proposed Mechanism of COA/TBE Transfer Dehydrogenation by 9

Alkene hydrogenation by 9b-H2 is much more facile than by 3-H2

Geometric Differences:

(a) $({}^{tBu4}PCP)Ir$ (b) $({}^{tBu4}POCOP)Ir$

Figure 3. Geometric comparisons between (^{tBu}₄PCP)Ir and (^{tBu}₄POCOP)Ir (DFT-optimized structures).^{65,76}.

(POCOP)Ir is much less sterically hindered than that of (PCP)Ir

Electronic Differences:

The iridium center in 9a iscalculated to be very slightly more electron-rich than that in 3

J. Am. Chem. Soc. 2004, 126, 1304²

Alkane Metathesis : disproportionation or molecular distribution

potential applications in fuel and bulk chemical production

$$H_3C - (CH_2)_m - CH_3 + H_3C - (CH_2)_n - CH_3 \rightarrow$$

 $H_3C - (CH_2)_{m+n-x} - CH_3 + H_3C - (CH_2)_x - CH_3$

1973 Burnett and Hunghes

Platinum/alumina : alkane tansfer-dehydrongenation catalyst Tungsten oxide/silica: metathesis of resulting olefins

2006 Goldman and Brookhart

Scheme 5. Product Formation Pathways for *n*-Hexane Metathesis: (a) Ideal Pathway To Produce *n*-Decane and Ethane Selectively, (b) Possible Pathway for Formation of *n*-Pentane and *n*-Heptane

Science 2006, 312, 257 24

How to avoid secondary metathesis, which decreases the overall selectivity

Figure 5. Two-pot system for alkane metathesis.

During n-octane metathesis using the two-pot apparatus, the only observed products of secondary metathesis were very small quantities of n-C15H32 and n-C16H34

Dehydrogenation Involving Heteroatoms:

Goldman

Dehydrogenation of 3-Pentanone and Cyclohexanone

only stoichiometric reactions were observed

Dehydrogenation of Amine-Boranes

$$nH_3NBH_3 \xrightarrow{9a-H_2} [H_2NBH_2]_n + nH_2$$

Proposed Mechanism of Ammonia–Borane Dehydrogenation by 9a-H₂

Dehydrogenation of C-N and C-O Linkages

Conclusion

 $\checkmark \rightarrow \checkmark \checkmark \checkmark$

Thanks

Count valence electrons for each complex:

Why these reactions have such a selectivity?

Propose a mechanism of following reaction: no need to explain selectivity of product a and b

