Dehydrogenation of Alkanes

Zhiqian "Wallace" Wang 02-08-2012

Contents:

- Introduction
- Dehydrogenation of Alkanes by Pincer Iridium Complexes
- Alkane Metathesis
- Dehydrogenation Involving Heteroatoms
- Conclusion

Introduction: Dehydrogenation of Alkanes

Early Work: From 1970s

Crabtree: Catalyst = $[\text{Ir(PR₃)₂(κ^2 -O₂CC₂F₅)₂H₂]⁺ R = Cy or C₆H₄CF₃$ 35 turnovers with acceptor; 35 turnovers without acceptor in open reflux Felkin: Catalyst = $(i$ -Pr₃P)₂IrH₅, $[(p$ -FC₆H₄)₃P]₂IrH₅, or $[(p$ -FC₆H₄)₃P]₃RuH₄ 45-70 turnovers with acceptor

Dehydrogenation of Alkanes by Pincer Iridium Complexes

1996: Jensen

82 turnovers/h at 150ºC, 12 turnovers/min at 200ºC \mathbb{R}^{nH_2} no observable decomposition over one week at 200 °C

J. Am. Chem. Soc. 1997, 119, 840

Angew. Chem. Int. Ed. 2001, 40, 3750 - 3781

J. AM. CHEM. SOC. 2004, 126, 1804-1811

The first example of efficient acceptorless dehydrogenation

Goldman:

close to 1000 turnovers

Chem. Commun. 1997, 2273 Chem. Commun. 1999, 655

Scheme 1. Proposed Mechanism of n -Alkane/TBE Transfer Dehydrogenation by 3-H₂

5-H4

Catalysts 3 and 5 show high kinetic selectivity for dehydrogenation of the terminal position of n-alkanes to give a-olefins. This regioselectivity holds great promise with respect to the formation of valuable a-olefins and products derived from them in tandem catalytic systems.

But --- isomerization

Figure 1. Proposed mechanism of both transfer-dehydrogenation of n -octane and octene-isomerization catalyzed by the (PCP)Ir catalysts.

> 10J. Am. Chem. Soc. 1999, 121, 4086

Table 1. Octene Distributions (Concentrations in mM) from Transfer-Dehydrogenation of n -Octane Catalyzed by 1 or 2 Using Various Hydrogen Acceptors. All Runs Conducted at 150 °C with 1.0 mM Catalyst in n -Octane Solution

cat ^a	accep	min	1 -oct	trans-2	$cis-2$	other	total	$\%$
$\overline{2}$	nbe^b	5	11	0.5	0.6	$\overline{0}$	12	91
	0.2 M	10	23	4	3	$\overline{0}$	30	76
		30	40	45	43	3	132	30
		60	6	82	40	63	208	3
$\mathbf{2}$	nbe	5	8	$\overline{0}$	$\overline{0}$	$\overline{0}$	8	> 90
	0.5 _M	10	19	$\overline{2}$	$\mathbf{1}$	$\overline{0}$	22	87
		30	59	56	40	0	154	38
		60	59	105	71	3	238	25
$\mathbf 2$	tbe^c	5	21	3	3	$\overline{0}$	27	78
	0.5 _M	10	27	6	6	$\overline{0}$	40	68
		30	44	65	45	1	155	28
		60	41	103	78	19	250	16
$\overline{2}$	$1-dec$	10	10	$\overline{0}$	$\overline{0}$	0	10	> 90
	0.5 _M	30	43	31	21	0	95	45
		60	10	64	40	13	134	8
1	tbe	6	10	$\overline{0}$	0	$\overline{0}$	10	> 90
	0.2 M	15	18	19	8	0	45	40
		30	20	41	20	0	81	25
		60	18	47	26	0	91	20
1	nbe	15	23	4	$\overline{2}$	$\overline{0}$	29	79
	0.5 _M	30	27	7	3	0	37	73
		60	30	15	5	0	50	60
1	$1-decd$	15	13	$\overline{0}$	$\overline{0}$	$\overline{0}$	13	> 95
	0.5 _M	30	34	$\mathbf{1}$	0.6	0	36	95
		60	74	7	4	0	86	87
		90	94	9	9	0	111	84
		120	97	32	14	0	143	68

 a cat = catalyst; accep = acceptor; 1-oct = 1-octene; other = (other octenes + 2 × [dienes]); $\% = 100 \times [1\text{-octene}]\text{/total.}$ b Norbornene. c t-Butylethene. d 1-Decene.

Mechanism of (PCP)Ir-Catalyzed Acceptorless Dehydrogenation of Alkanes

Rate determine step : H₂ loss

A Combined Computational and Experimental Study

2002: Karsten Krogh-Jespersen* and Alan S. Goldman* alkane + acceptor $\stackrel{\text{catalyst}}{\longrightarrow}$ alkene + $H_2 \bullet$ acceptor (transfer) (1) alkane $\xrightarrow{\text{catalyst}}$ alkene + H₂[†] ("acceptorless") (2) $(PCP)IrH_2 + RH \rightarrow (PCP)Ir + H_2 + RH$ $(3a)$ $(PCP)Ir + H_2 + RH \rightarrow (PCP)Ir(R)(H) + H_2$ $(3b)$ Dissociative (D) pathway $(PCP)IrH_2 + RH \rightarrow [(PCP)IrH_3R]$ $(4a)$ $[(PCP)IrH₃R] \rightarrow (PCP)Ir(R)(H) + H₂$ $(4b)$ Associative (A) pathway

Overall Reaction:

$(PCP)IrH_2 + RH \rightarrow (PCP)Ir(R)(H) + H_2$

13**J. AM. CHEM. SOC. 2002**, 124, 11404-11416

 $(PCP)IrH_2 + RH \rightarrow (PCP)Ir + H_2 + RH$ $(3a)$

 $(PCP)Ir + H_2 + RH \rightarrow (PCP)Ir(R)(H) + H_2$ $(3b)$

Dissociative (D) pathway

Ir(I) pathway is not accessible in the Cp*Ir case, and the alternative of *ó*-bond-metathesis by Cp*Ir(III) was calculated to be less favorable than the Ir(V) pathway

$V_{\mathbf{S}}$

 $(PCP)IrH_2 + RH \rightarrow [(PCP)IrH_3R]$ $(4a)$

 $[(PCP)IrH₃R] \rightarrow (PCP)Ir(R)(H) + H₂$ $(4b)$

Associative (A) pathway

Cp*Ir(III) + C H Ir(V) Bergman & Hall:

high entropy under these conditions of the free H2 molecule

A wide range of modified PCP pincer ligands with varying electronic and steric properties have been explored synthetically and computationally

Ru (12)

16

(R4PCP)Ir

The p-methoxy-substituted complex (MeO-tBu4PCP)IrH2 (6a-H2) gave a 2-3-fold increase in turnovers for acceptorless dehydrogenation of cyclodecane as compared to 3-H2.

The sterically less bulky (MeO-Pr4PCP)IrH4(6b-H4) was extremely effective in the acceptorless dehydrogenation of cyclodecane, with a total of 3050 turnovers obtained after 72 h under reflux conditions (201 $\,^{\circ}$ C)

Thermally very stable:

Complex 7a-H2 tolerated reaction temperatures up to $250 \degree C$

Complex 7a-H2 significantly less reactive than 3-H2 under comparable conditions

One of the most notable modifications of the PCP ligand: Brookhart and Jensen

18**J. AM. CHEM. SOC. 2004**, 126, 1804-1811

Table 1. TONs for the Transfer Dehydrogenation of COA and TBE Catalyzed by 4a–f and 11 Plus NaOtBu Obtained at 200 °C and the COE:1,3-COD Product Ratio^a

^a Average of three runs, based on conversion of TBE determined by ¹H NMR, 3030 TO = 100% conversion, all reactions performed under an argon atmosphere. ^b Determined by ¹H NMR, the sum of COE and COD double bonds equals TON of TBE within 2% difference.

X

MeO

Me

H

F

 C_6F_5

 Ar^F

 $4f$

(R4PCP)Ir (R4POCOP)Ir

(tBu4PCP)Ir reversibly reacts with TBE to give a vinylic C-H addition Product (tBu4POCOP)Ir forms a ^π-coordinated complex

Scheme 1. Proposed Mechanism of n-Alkane/TBE Transfer Dehydrogenation by 3-H₂

Scheme 3. Proposed Mechanism of COA/TBE Transfer Dehydrogenation by 9

Alkene hydrogenation by 9b-H2 is much more facile than by 3-H2

Geometric Differences:

(a) $(^{tBu4}PCP)Ir$ (b) (^{tBu4}POCOP)Ir

Figure 3. Geometric comparisons between ($^{\text{Bu}}$ PCP)Ir and ($^{\text{Bu}}$ POCOP)Ir (DFT-optimized structures). 65,76 .

(POCOP)Ir is much less sterically hindered than that of (PCP)Ir

Electronic Differences:

The iridium center in 9a iscalculated to be very slightly more electron-rich than that in 3

J. Am. Chem. Soc. 2004, 126, 1304 $\widehat{4}^2$

Alkane Metathesis : disproportionation or molecular distribution

potential applications in fuel and bulk chemical production

$$
H_3C-(CH_2)_m-CH_3 + H_3C-(CH_2)_n-CH_3 \rightarrow
$$

$$
H_3C-(CH_2)_{m+n-x}-CH_3 + H_3C-(CH_2)_x-CH_3
$$

1973 Burnett and Hunghes

Platinum/alumina : alkane tansfer-dehydrongenation catalyst Tungsten oxide/silica: metathesis of resulting olefins

2006 Goldman and Brookhart

Scheme 5. Product Formation Pathways for n-Hexane Metathesis: (a) Ideal Pathway To Produce n-Decane and Ethane Selectively, (b) Possible Pathway for Formation of n -Pentane and n -Heptane

24

How to avoid secondary metathesis, which decreases the overall selectivity

Figure 5. Two-pot system for alkane metathesis.

During n-octane metathesis using the two-pot apparatus, the only observed products of secondary metathesis were very small quantities of n-C15H32 and n-C16H34

Dehydrogenation Involving Heteroatoms:

Goldman

Dehydrogenation of 3-Pentanone and Cyclohexanone

only stoichiometric reactions were observed

Dehydrogenation of Amine-Boranes

$$
nH_3NBH_3 \xrightarrow{9a \cdot H_2} [H_2NBH_2]_n + nH_2
$$

Proposed Mechanism of Ammonia-Borane Dehydrogenation by 9a-H₂

Dehydrogenation of C-N and C-O Linkages

Conclusion

Thanks

Count valence electrons for each complex:

Why these reactions have such ^a selectivity?

Propose ^a mechanism of following reaction: no need to explain selectivity of product ^a and b

