Spirocycles and the Development of a MDM2 antagonist

Advisor: Prof. Guangbin Dong University of Texas at Austin March 2, 2016

Outline

- Introduction
- Examples of spirocycle formation/synthesis
- Examples of thiazolidine formation/synthesis; a reoccurring and potent moiety
- Biological Aside
 - western blot, cell cycle, and P53-MDM2 complex
- Specific thiazolidine drug example

cyclopropanes

oxiranes

spirooxindol-3,3'thiazolidine

spiroazetidines

Spirocycle features

- Rigidify ligand conformation upon ligation to target
- Conformation restriction within molecule
- Ligand binding entropy
- Greater 3-dimensionality
 - more physical properties
 when compared to
 planar/aromatic derivatives
- Novelty for patentability

Zheng, Y.; Tice, C. M.; Singh, S. B. Bioorg. Med. Chem. Lett. 2014, 24, 3673.

1a is twice as potent and more selective than early lead1b due to 3 membered spiro constraint.

Zheng, Y.; Tice, C. M.; Singh, S. B. Bioorg. Med. Chem. Lett. 2014, 24, 3673.

Franz, A. K.; Hanhan, N. V.; Ball-Jones, N.R. ACS Catal. 2013, 3, 540

The University of Texas at Austin

NHC-catalyzed cycloaddition/Annulation

Franz, A. K.; Hanhan, N. V.; Ball-Jones, N.R. ACS Catal. **2013**, *3*, 540 Wang, X.; Zhang, Y.; Ye, S. *Adv. Synth. Catal.* **2010**, 352, 1892

The University of Texas at Austin

 R^1

46

Franz, A. K.; Hanhan, N. V.; Ball-Jones, N.R. ACS Catal. **2013**, *3*, 540 Sun, L. H.; Shen, L.T.; Ye, S. *Chem. Commun.* **2011**, 47, 10136

Cooperative NHC/Lewis Acid Strategy

Question: Please provide a stereochemical model for the observed stereochemistry in the NHC/Lewis Acid strategy case. (the conversion of benzoquinone **38** to spirolactone **47**)

Franz, A. K.; Hanhan, N. V.; Ball-Jones, N.R. ACS Catal. **2013**, *3*, 540 Scheidt, K.A. Chem. Sci. **2012**, *3*, 53 and Angew. Chem. Int. Ed. **2012**, *51*, 4963

Michael Reaction Strategy complementary spirolactone formation

Franz, A. K.; Hanhan, N. V.; Ball-Jones, N.R. ACS Catal. **2013**, *3*, 540 Bergonzini, G.; Melchiorre, P. Angew. Chem. **2012**, *51*, 995

Zn-ProPhenol Spirolactone Synthesis

Franz, A. K.; Hanhan, N. V.; Ball-Jones, N.R. ACS Catal. **2013**, *3*, 540 Trost, B. M.: Hirano, K. Org. Lett. **2012**, *14*, 2446

Zn-ProPhenol Spirolactone Synthesis

Scheme 4. Zinc-ProPhenol Complex Is Necessary for the Transesterification

racemic

racemic 11% ee

Trost, B. M.: Hirano, K. Org. Lett. 2012, 14, 2446

Asymmetric [3+2] allyIsilane annulation

Takes advantage of the inherent enantioselectivity of allylsilanes

Franz, A. K.; Hanhan, N. V.; Ball-Jones, N.R. ACS Catal. **2013**, *3*, 540 Franz, A.K. Angew. Chem. Int. Ed. **2012**, *51*, 989

Pd catalyzed spirocyclic-pentanes

Franz, A. K.; Hanhan, N. V.; Ball-Jones, N.R. ACS Catal. **2013**, *3*, 540 Trost, B. M.; *J. Am. Chem Soc.* **2007**, *129*, 12396

Wall and Flap Model

Franz, A. K.; Hanhan, N. V.; Ball-Jones, N.R. ACS Catal. **2013**, *3*, 540 Trost, B. M.; Angew. Chem., Int. Ed. **2011**, *50*, 6167

Trienamine/DA approach

"remarkably broad strategy for the enantioselective synthesis of complex spirocycles"

Franz, A. K.; Hanhan, N. V.; Ball-Jones, N.R. ACS Catal. 2013, 3, 540

Trienamine/DA approach Strategy

Franz, A. K.; Hanhan, N. V.; Ball-Jones, N.R. ACS Catal. **2013**, *3*, 540 Jorgensen, K. A.; *J. Am. Chem. Soc.* **2011**, *133*, 5053

Ring Expansion Approach

Franz, A. K.; Hanhan, N. V.; Ball-Jones, N.R. *ACS Catal.* **2013**, *3*, 540 Chai, Z.; Rainey, T.J. *J. Am. Chem. Soc.* **2012**, *134*, 3615

Proposed reaction mechanism

Chai, Z.; Rainey, T.J. J. Am. Chem. Soc. 2012, 134, 3615

Thiazolidines

- Indoles and its analogous (such as isatin) are good pharmacophores for designing chemotherapeutic
- Spiro[indole-thiazolidines] have broad spectrum of pharmacological properties

R. Sakhuja et al. Bioorg. Med. Chem. Lett. 2011, 21, 5465

Example synthesis of a thiazolidine

ntantiomeric pair

R. Sakhuja et al. Bioorg. Med. Chem. Lett. 2011, 21, 5465

Another example of thiazolidine

(a) NaH, DMF, 0°C then ArCH₂Br or Alk-X; (b) (1) Ar'NH₂, EtOH, reflux, 6 h; (2) mercaptoacetic (aka thioglycolic acid) acid, toluene, reflux, 16 h; (c) mCPBA (5 equiv), CHCl₃, rt, 24h (d) mCPBA (1.1 equiv), CHCl₃, 0°C, 1 h

V.V. Vintonyak et al. Tetrahedron 2011, 67, 6713

Thiazolidine synthesis w/ sulfactant

Figure 3. Micelles-promoted green synthesis of 3'H-Spiro[indole-3,2'-[1,3]benzothiazole]-2(1H)-one.

Scheme 1. Synthesis of 3'H-spiro[indole-3,2'-[1,3]benzothiazole]-2(1H)-ones 4a-c.

R. Jain et al. Tetrahedron Letters 2012, 53, 6236

Biological Aside Before specific case study

"I try to show the public that chemistry, biology, physics, astrophysics is life. It is not some separate subject that you have to be pulled into a corner to be taught about." -Neil deGrasse Tyson

- 1) cell cycle
- 2) p53 and MDM2
- 3) Western Blot

Cell Cycle

Phase	Abbreviation	Description
Interphase	I	Includes G _o , S, and G ₁
Gap 1	G1	cell growth, protein and organelles accumulation
Synthesis	S	DNA replication
Gap 2	G ₂	Cell growth
Mitosis	М	Cell division
Gap 0	G ₀	Quiescent/ senescent

P53-MDM2

Crystal structure of the p53-binding domain of MDM2

Western Blotting

- 1) Cell lysis and separation to extract protein
- 2) Gel Electrophoresis
 - Charged molecules are separated according to physical properties

3) Blotting

- proteins are transferred to a membrane via electroelution.
- Nonspecific sites of the remaining membrane surface are blocked
- Proteins are labeled for detection

cell cycle

Inhibits 30% of p53-MDM2 interaction by mimicking p53 residues Phe19 and Trp23 that bind to MDM2

Outline of MDM2 antagonist Discovery

1-4

9'а-е/12'а-е

9а-е/12а-е

(i) Cys-OEt, NaHCO₃ in MeOH, MW; (ii) triphosgene TEA, THF, rt, 10 min, then R_2 -NH₂; (iii) MeOH, TEA, reflux, 1-3 hr

Cytotoxic activity of derivatives

Table 1. Cytotoxic Activity of Spiro[imidazo[1,5-c]thiazole-3,3'-indoline]-2',5,7(6H,7aH)-trione Derivatives 9a-e/12a-e

				$IC_{50} \pm SD^a (\mu M)$		
compd	R	R_1	R_2	HEK ^b	$M14^{c}$	U937 ^d
9a	Н	н	-CH ₂ C ₆ H ₅	4.80 ± 0.15	10.64 ± 0.04	3.90 ± 0.01
9b	Н	H	-CH ₂ C ₆ H ₄ (4-CH ₃)	4.53 ± 0.15	13.27 ± 0.03	5.91 ± 0.02
9c	Н	H	-CH ₂ C ₆ H ₄ (4-Cl)	0.44 ± 0.01	0.53 ± 0.01	0.87 ± 0.01
9d	Н	H	-CH2C6H2(3,4,5-OCH3)	3.80 ± 0.08	4.73 ± 0.02	2.51 ± 0.05
9e	н	н	4-dimethylcyclohexyl	4.22 ± 0.07	7.07 ± 0.01	2.61 ± 0.05
10a	CH ₃	н	-CH ₂ C ₆ H ₅	3.30 ± 0.07	3.88 ± 0.02	2.09 ± 0.04
10b	CH ₃	н	-CH ₂ C ₆ H ₄ (4-CH ₃)	3.01 ± 0.06	3.39 ± 0.03	2.77 ± 0.02
10c	CH ₃	н	-CH ₂ C ₆ H ₄ (4-Cl)	3.88 ± 0.05	6.65 ± 0.02	3.31 ± 0.04
10d	CH ₃	н	-CH2C6H2(3,4,5-OCH3)	2.04 ± 0.03	2.40 ± 0.02	2.06 ± 0.04
10e	CH_3	н	4-dimethylcyclohexyl	16.01 ± 0.05	19.12 ± 0.07	12.48 ± 0.05

Cell Lines: HEK, transformed human embryonic kidney cell line; M14, human melanoma cell line; U937, Human leukemia monocyte lymphoma

The University of Texas at Austin

Cytotoxic activity of derivatives

Table 1. Cytotoxic Activity of Spiro[imidazo[1,5-c]thiazole-3,3'-indoline]-2',5,7(6H,7aH)-trione Derivatives 9a-e/12a-e

					$IC_{50} \pm SD^{a} (\mu M)$		
compd	R	R_1	R_2	HEK^b	$M14^{c}$	U937 ^d	
11a	Br	н	-CH ₂ C ₆ H ₅	8.48 ± 0.09	12.04 ± 0.03	7.58 ± 0.05	
11b	Br	н	-CH ₂ C ₆ H ₄ (4-CH ₃)	7.61 ± 0.10	10.24 ± 0.10	6.23 ± 0.14	
11c	Br	н	-CH ₂ C ₆ H ₄ (4-Cl)	7.13 ± 0.06	7.06 ± 0.05	5.01 ± 0.03	
11d	Br	н	-CH ₂ C ₆ H ₂ (3,4,5-OCH ₃)	9.31 ± 0.09	11.04 ± 0.02	5.02 ± 0.03	
11e	Br	н	4-dimethylcyclohexyl	>40	> 40	> 40	
12a	н	CH_3	-CH ₂ C ₆ H ₅	3.98 ± 0.05	6.37 ± 0.04	2.89 ± 0.03	
12b	н	CH ₃	-CH ₂ C ₆ H ₄ (4-CH ₃)	10.71 ± 0.10	31.79 ± 0.04	16.75 ± 0.02	
12c	Н	CH_3	-CH ₂ C ₆ H ₄ (4-Cl)	2.11 ± 0.05	2.47 ± 0.02	2.91 ± 0.01	
12d	Н	CH ₃	-CH ₂ C ₆ H ₂ (3,4,5-OCH ₃)	6.01 ± 0.06	7.66 ± 0.23	5.70 ± 0.05	
12e	Н	CH ₃	4-dimethylcyclohexyl	>40	> 40	> 40	
doxorubicin				0.9 ± 0.08	1.0 ± 0.05	0.8 ± 0.01	

Cell Lines: HEK, transformed human embryonic kidney cell line; M14, human melanoma cell line; U937, Human leukemia monocyte lymphoma

Hit compounds 9c and 10d

To undergo additional *in vitro* testing and derivatization

Derivatives **9c** and **10d** exhibit good cell selectivity

 a) Human papillary thyroid carcinoma TPC1

b) Normal thyroid TAD-2 cell

Derivatives of 9c and 10d

Table 2. Cytotoxic Activity of 1'-Acylspiro[(dihydroimidazo[1,5-c]-thiazolo-5,7-dione)-3,3'-(dehydroindol-2-one)] Derivatives 13f-i/14f-i

compd R			R2′	$IC_{50} \pm SD^{a} (\mu M)$		
	R	R ₁ ′		HEK	M14	U937
9c	н		4-C1	0.44 ± 0.01	0.53 ± 0.01	0.87 ± 0.01
13f	н	-C ₆ H ₅	4-C1	3.50 ± 0.02	3.25 ± 0.36	3.12 ± 0.07
13g	н	-C ₆ H ₄ (4-CH ₃)	4-C1	2.50 ± 0.10	2.08 ± 0.10	2.01 ± 0.15
13h	н	-C ₆ H ₄ (4-Cl)	4-C1	5.01 ± 0.15	3.37 ± 0.37	2.61 ± 0.05
13i	н	-CH2CH2CH3	4-C1	2.01 ± 0.05	2.04 ± 0.34	2.10 ± 0.09
10d	CH ₃		3,4,5-OCH3	2.04 ± 0.03	2.40 ± 0.02	2.06 ± 0.04
14f	CH ₃	-C ₆ H ₅	3,4,5-OMe	4.22 ± 0.14	7.84 ± 0.02	4.31 ± 0.02
14g	CH ₃	-C ₆ H ₄ (4-CH ₃)	3,4,5-OMe	3.81 ± 0.05	5.95 ± 0.01	2.42 ± 0.04
14h	CH ₃	-C ₆ H ₄ (4-Cl)	3,4,5-OMe	4.71 ± 0.15	8.14 ± 0.02	3.11 ± 0.01
14i	CH ₃	-CH2CH2CH3	3,4,5-OMe	4.42 ± 0.16	7.40 ± 0.0126	4.10 ± 0.02

^a Data represent mean values (SD) of three independent determinations.

Video Time Lapse Microscopy

treated cells experienced reduced cell division, but what was the cause of the reduced cell division?

Determining mode of Cytotoxicity

a)

Determining mode of Cytotoxicity

Determining mode of Cytotoxicity

Both treated cells exhibit and increase in p53 concentration

9c c) 10d d) nutlin-3 treated

Further Development of 9c

Derivatization

Bertamino, A. et al. J. Med. Chem., 2013, 56, 5407

(i) Cys-OEt, NaHCO₃ in EtOH; (ii) R₂-COCI, TEA, THF, 2 h, rt

What about stereoselectivity? => lets look at a similar system Bertamino, A. *et al. J. Med. Chem.*, **2013**, *56*, 5407

Facile Ring Opening of Spirooxindoles a look at a similar system

Yujun Zhao et al. J. Am. Chem. Soc. 2013, 135, 7223 and J. Med. Chem. 2013, 56, 5553

Stable cis-cis isomer

Open ring intermediate

Figure 3. Absolute stereochemistry from X-ray crystallography.

Isomerization Mechanism a look at a similar system

Yujun Zhao et al. J. Am. Chem. Soc. 2013, 135, 7223 and J. Med. Chem. 2013, 56, 5553

Figure 3. ROE interaction observed between H-4' and H-1" in the ROESY spectrum of compound 4n.

Question: Please provide a mechanistic rational for the observed isomerization.

Synthesis of Series 5

(i) 4-CI-C₆H₄COCI, TEA, THF, 2h, rt; (ii) Cys-OEt, NaHCO₃, EtOH

Biological effects

Table 1. Antiproliferative Activity of Spiro[indoline-3,2'-thiazolidine] (4 and 5) and Spiro[indoline-3,2'-thiazole] (6) Derivatives

				$IC_{50} \pm SD \ (\mu M)^a$	
compd	R	R ₁	R ₂	MCF-7 ^b	HT29 ²
3	н	н		1.21 ± 0.6	1.60 ± 0.4
4a	н	н	CH ₂ C ₆ H ₄ (4-Cl)	>5	1.00 ± 0.2
4b	CH ₃	н	CH ₂ C ₆ H ₄ (4-Cl)	4.81 ± 1.0	0.78 ± 0.2
4c	Br	н	CH ₂ C ₆ H ₄ (4-Cl)	2.90 ± 0.8	0.66 ± 0.1
4d	н	н	C ₆ H ₄ (4-Cl)	2.15 ± 0.7	3.69 ± 0.9
4c	CH ₃	н	C ₆ H ₄ (4-Cl)	2.12 ± 0.7	1.09 ± 0.6
4f	Br	н	C ₆ H ₄ (4-Cl)	0.90 ± 0.2	0.11 ± 0.09
4g	Br	н	C ₆ H ₄ (4-Cl)	3.00 ± 0.2	2.00 ± 0.8
4h	H	CH ₃	C ₆ H ₄ (4-Cl)	4.52 ± 1.1	0.18 ± 0.09
41	CH ₃	CH ₃	C ₆ H ₄ (4-Cl)	1.23 ± 0.4	0.12 ± 0.07
4j	Br	CH ₃	C ₆ H ₄ (4-Cl)	0.52 ± 0.3	0.08 ± 0.01
4k	Br	CH ₃	CH ₂ C ₆ H ₄ (4-Cl)	0.27 ± 0.1	0.36 ± 0.09
41	Br	CH ₃	C ₆ H ₅	0.31 ± 0.1	0.21 ± 0.2
4m	Br	CH ₃	C ₆ H ₄ (4-CH ₃)	0.06 ± 0.05	0.09 ± 0.05
4n	Br	CH ₃	cydohexyl	0.04 ± 0.01	0.07 ± 0.01
40	CH ₃	CH ₃	cydohexyl	1.20 ± 0.6	1.10 ± 0.6
4p	H	CH ₃	cydohexyl	2.30 ± 0.8	1.90 ± 0.8
4q	Br	н	cydohexyl	0.22 ± 0.1	0.56 ± 0.1
4r	Br	CH ₃	cydohexyl	2.01 ± 0.9	1.90 ± 0.7

MCF-7: Human breast adenocarcinoma cell. HT29: Human colon carcinoma cell

Biological effects

Table I. Antiproliferative Activity of Spiro[indoline-3,2'-thiazolidine] (4 and 5) and Spiro[indoline-3,2'-thiazole] (6) Derivatives

				IC ₅₀ ± S	D (µM) ^a
compd	R	R ₁	R ₂	MCF-7 ^b	HT29 ^e
3	н	н		1.21 ± 0.6	1.60 ± 0.4
5a	н	COC_H ₄ (4-Cl)	H	1.01 ± 0.6	1.03 ± 0.8
5b	CH ₃	COC_H_(4-Cl)	H	3.46 ± 0.9	0.23 ± 0.1
5c	Br	COC_H ₄ (4-Cl)	H	0.15 ± 0.1	0.02 ± 0.01
5d	Br	cyclohexyl	H	2.08 ± 0.8	1.40 ± 0.8
6b	CH ₃	COC_H ₄ (4-Cl)		2.78 ± 0.9	0.21 ± 0.1
6c	Br	COC_H_(4-CI)		0.86 ± 0.4	0.20 ± 0.1
6d	Br	cyclohexyl		1.63 ± 0.6	0.85 ± 0.4

^aData represent mean values (±SD) of three independent determinations. ^bHuman breast adenocarcinoma cell line. 'Human colon carcinoma cell line.

MCF-7: Human breast adenocarcinoma cell. HT29: Human colon carcinoma cell

Hit compound 4n

Table 2. Antiproliferative Activity of 4n on Multiple Human Tumor Cell Lines and One Normal Cell Line

		$IC_{50} \pm SD \ (\mu M)^a$				
	cell line	4n	nutlin-3	Dox		
origin tumor						
breast	MCF-7	0.04 ± 0.01	2.9 ± 0.31^{27a}	0.02 ± 0.01		
prostate	PC3	0.41 ± 0.21	30.3 ± 2.9^{27b}	0.75 ± 0.10		
leukemia	U937	0.07 ± 0.01	15.6 ± 1.9	0.12 ± 0.03		
lung	Calu	0.10 ± 0.06	27.2 ± 5.3	1.81 ± 0.33		
liver	HEPG2	0.14 ± 0.06	10.2 ± 5.1^{27c}	0.08 ± 0.01		
anaplastic thyroid	C643	0.55 ± 0.08	23 ± 11.2	0.07 ± 0.01		
origin normal						
human gingival fibroblast	HGF	1.60 ± 0.15	1.40 ± 3.6	0.50 ± 0.15		

^aData represent mean values $(\pm SD)$ of three independent determinations at 24 h.

Binding Model

Br S N N N

Cell cycle progression

a) 24 hr b) 48hrs c)72 hrs d) 24 hr and varying concentration

Apoptotic cell death

Bertamino, A. et al. J. Med. Chem., 2013, 56, 5407

Mechanism of apoptosis

Summary

- Examples of spirocycle formation/synthesis
- Examples of thiazolidine formation/synthesis; a reoccurring and potent moiety
- Biological Aside
 - western blot, cell cycle, and P53-MDM2 complex
- Specific thiazolidine drug example
 - 4n high efficiency in breast, colon, lung, and leukemia cancer cell lines
 - Docking studies allowed to predict bind mode
 - 4n induces apoptosis

THANK YOU

Question 1

Question 2: Western Blotting

- 1) Cell lysis and separation to extract protein
- 2) Gel Electrophoresis
 - Charged molecules are separated according to physical properties

Question 2: Transfer Method: Blotting

3) Blotting

- proteins are transferred to a membrane via electroelution.
- Nonspecific sites of the remaining membrane surface are blocked
- Proteins are labeled for detection

Question 3

Ι

Scheme I

trans 🗄

(i) Cys-OEt, NaHCO₃ in EtOH; (ii) R₂-COCl, TEA, THF, 2 h, rt

Observed isomerization:

Figure 3. ROE interaction observed between H-4' and H-1" in the ROESY spectrum of compound 4n.

"Base-catalyzed isomerization of thiazolidines through Schiff Base intermediates (I) is a well-known process"

Trost, B.M. et al. Angew. Chem. Int. Ed., 2011, 50, 6167

Wall and Flap Model

Trost, B.M. et al. Angew. Chem. Int. Ed., 2011, 50, 6167