Supramolecular Polymers: Characterization, Preparation and Applications

Aida, T.; Meijer, E. W.; Stupp, S. I. *Science* 2012, *335*, 813.
Yan, X.; Wang, F.; Zheng, B.; Huang, F. *Chem. Soc. Rev.* 2012, *41*, 6042.
Yang, L.; Tan, X.; Wang, Z.; Zhang, X. *Chem. Rev.* 2015, *115*, 7196.
Rest, C.; Kandanelli, R.; Fernandez, G. *Chem. Soc. Rev.* 2015, *44*, 2543.

REPORTER: LIN DENG Supervisor: Guangbin Dong Date: Feb 10. 2015

General Rule:

- The characterization of a supramolecular polymer cannot be realized with a single method; a convincing conclusion relies on the combination of several different techniques.
- the average molar mass is especially useful (high degree of polymerization (DP) is required)

Several Methods:

- Theoretical estimation of molecular weight from binding constant
- Size exclusion chromatography (SEC)
- Viscometry
- Light scattering (SLS and DLS)
- Vapor pressure osmometry (VPO)
- Mass spectrometry & NMR spectroscopy
- Scanning probe microscopy and electron microscopy (AFM & STM)
- AFM-based single molecule force spectroscopy (SMFS)
- Asymmetric Flow Field-Flow Fractionation (AF4)

Liu, Y.; Wang, Z.; Zhang, X. Chem. Soc. Rev. 2012, 41, 5922.

Yang, L.; Tan, X.; Wang, Z.; Zhang, X. Chem. Rev. 2015, 115, 7196.

<u>Theoretical estimation—qualitative information</u>

Thermodynamic equilibrium

Isodesmic model (simplest):

assumes that the association of the end-groups of the monomers does *not change* during the supramolecular polymerization process

DP~ $(K_aC)^{1/2}$ K_a : equilibrium constant between monomers C: total monomer concentration

K_a could be obtained through NMR titrations, isothermal titration calorimetry and UV-vis spectroscopy

• Size exclusion chromatography (SEC)

Especially gel permeation chromatography (GPC) molar mass distribution of a polymer (require a standard curve)

- Not suitable for supramolecular polymer when the DP is highly dependent on the concentration (dilution)
- Works well for systems with slow association and disassociation kinetics (e.g. multiple H-bonding and metal-coordination systems)

Liu, Y.; Wang, Z.; Zhang, X. Chem. Soc. Rev. 2012, 41, 5922.

Viscometry—Classical method

Mark–Houwink equation

 $[\eta]$ =*KM^a K*, *a*: empirical constants

Difficulty: find a suitable **covalent model** for dynamic system to obtain these parameters

Liu, Y.; Wang, Z.; Zhang, X. *Chem. Soc. Rev.* **2012**, *41*, 5922. Abed, S.; Boileau, S.; Bouteiller, L. *Polymer* **2001**, *42*, 8613. Niu, Z.; Huang, F.; Gibson, H. W. *J. Am. Chem. Soc.* **2011**, *133*, 2836.

 Deduce the critical polymerization concentration (CPC)
 Supramolecular polymerization with a ring-chain mechanism

5

- Light scattering (SLS and DLS)
 - Static light scattering (SLS)
 Measure the molecular mass of polymers– determine M_w
 Not always applicable for supramolecular polymers
 - Dynamic light scattering (DLS) Measure the *size distribution* of small particles or aggregates
- Vapor pressure osmometry (VPO)

Determination of M_n

- The vapor pressure of a solution is lower than that of the pure solvent (same T and pressure)
- Raoult's law-- the M_n and the vapor pressure can be related

- Mass spectrometry & NMR spectroscopy
 - MALDI-TOF-MS: Soft ionization method
 - turbo ion spray TOF MS---up to 14mer

- Mass spectrometry & NMR spectroscopy
 - ¹H-NMR– useful in determining polymers *M_n* by end-group analysis
 - For supramolecular polymers, need many assumptions; usually used for qualitative analysis

Increasing conc. of monomer, broader peaks generated– suggesting formation of supramolecular polymers

• Diffusion ordered ¹H-NMR spectroscopy (DOSY):

Increasing conc. of monomer, decreasing diffusion coefficient– suggesting formation of supramolecular polymers

Liu, Y.; Wang, Z.; Zhang, X. Chem. Soc. Rev. 2012, 41, 5922.

Haino, T.; Watanabe, A.; Hirao, T.; Ikeda, T. Angew. Chem. Int. Ed. 2012, 51, 1473.

- Scanning probe microscopy and electron microscopy (AFM & STM)
 - Scanning tunneling microscopy (STM): image the sample at the atomic scale --- characterizing a rigid and big supramolecular polymer (dilute sample)

Liu, Y.; Wang, Z.; Zhang, X. Chem. Soc. Rev. 2012, 41, 5922.

Atomic force microscopy (AFM) imaging the *morphology of surfaces* and providing a *three dimensional surface* profile

Determine growth height for surface grafted supramolecular polymers

 Transmission electron microscopy (TEM) -- visualize aggregates

- <u>AFM-based single molecule force spectroscopy (SMFS)</u>
 - Single molecule force spectroscopy (SMFS) AFM as a highly sensitive force sensor
 - Application in polymer research: entropic and enthalpic *elasticity* of a *single polymer chain*; force-induced conformational transition, etc.

Liu, Y.; Wang, Z.; Zhang, X. Chem. Soc. Rev. 2012, 41, 5922.

Zou, S.; Schönherr, H.; Vancso, G. J. Angew. Chem. Int. Ed. 2005, 44, 956.

Asymmetric Flow Field-Flow Fractionation (AF4)

velocity gradient -separates the sample according to their size (smaller molecules elute first) -opposite to GPC

16

Driving forces for Supramolecular Polymers

- Multiple Hydrogen Bonds----- 5-30 kJ/mol
- Metal Coordination Bonds
- Host-Guest Interactions
- Aromatic Donor-Acceptor Interaction
- Multiple Driving Force

First example : Bifunctional diamidopyridines and uracil derivatives

Homodimerizing: Mm can be tuned by solvent and concentration

Sextuple arrays—Rigid fiber and gel were observed in different solvent.

10

Fouquey, C.; Lehn, J.-M.; Levelut, A.-M. *Adv. Mater.* **1990**, *2*, 254. Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.; Hirschberg, J. H. K. K.; Lange, R. F. M.; Lowe, J. K. L.; Meijer, E. W. *Science* **1997**, *278*, 1601. Kolomiets, E.; Buhler, E.; Candau, S. J.; Lehn, J. M. *Macromolecules* **2006**, *39*, 1173.

Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.; Hirschberg, J. H. K. K.; Lange, R. F. M.; Lowe, J. K. L.; Meijer, E. W. Science **1997**, *278*, 1601.

Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.; Hirschberg, J. H. K. K.; Lange, R. F. M.; Lowe, J. K. L.; Meijer, E. W. Science **1997**, *278*, 1601.

- polymer-like viscoelastic behavior
- Increasing T, increasing rate of chain breaking
- thermoplastic behavior

Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.; Hirschberg, J. H. K. K.; Lange, R. F. M.; Lowe, J. K. L.; Meijer, E. W. Science **1997**, *278*, 1601.

Folmer, B. J. B.; Sijbesma, R. P.; Versteegen, R. M.; van der Rijt, J. A. J.; Meijer, E. W. Adv. Mater. 2000, 12, 874.

Supramolecular Copolymers

Ligthart, G. B. W. L.; Ohkawa, H.; Sijbesma, R. P.; Meijer, E. W. J. Am. Chem. Soc. 2005, 127, 810.

Ligthart, G. B. W. L.; Ohkawa, H.; Sijbesma, R. P.; Meijer, E. W. J. Am. Chem. Soc. 2005, 127, 810.

Biomedical Applications

Dankers, P. Y. W.; Harmsen, M. C.; Brouwer, L. A.; Van Luyn, M. J. A.; Meijer, E. W. Nat Mater 2005, 4, 568.

Biomedical Applications

Formation of a hydrogel

Dankers, P. Y. W.; Hermans, T. M.; Baughman, T. W.; Kamikawa, Y.; Kieltyka, R. E.; Bastings, M. M. C.; Janssen, H. M.; Sommerdijk, N. A. J. M.; Larsen, A.; van Luyn, M. J. A.; Bosman, A. W.; Popa, E. R.; Fytas, G.; Meijer, E. W. *Adv. Mater.* **2012**, *24*, 2703. **23**

Biomedical Applications

Formation of a hydrogel

Dankers, P. Y. W.; Hermans, T. M.; Baughman, T. W.; Kamikawa, Y.; Kieltyka, R. E.; Bastings, M. M. C.; Janssen, H. M.; Sommerdijk, N. A. J. M.; Larsen, A.; van Luyn, M. J. A.; Bosman, A. W.; Popa, E. R.; Fytas, G.; Meijer, E. W. *Adv. Mater.* **2012**, *24*, 2703. **24**

Dankers, P. Y. W.; Hermans, T. M.; Baughman, T. W.; Kamikawa, Y.; Kieltyka, R. E.; Bastings, M. M. C.; Janssen, H. M.; Sommerdijk, N. A. J. M.; Larsen, A.; van Luyn, M. J. A.; Bosman, A. W.; Popa, E. R.; Fytas, G.; Meijer, E. W. *Adv. Mater.* **2012**, *24*, 2703. **25**

Self-healing Materials

Posessing polymer-like properties

Cordier, P.; Tournilhac, F.; Soulie-Ziakovic, C.; Leibler, L. Nature 2008, 451, 977.

Tee, B. C. K.; Wang, C.; Allen, R.; Bao, Z. Nat Nano 2012, 7, 825.

Self-healing Materials in electronic skin

Tee, B. C. K.; Wang, C.; Allen, R.; Bao, Z. Nat Nano 2012, 7, 825.

Self-healing Materials in lithium-ion battery

Self-healing Materials in lithium-ion battery

Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z. Nat. Chem. 2013, 5, 1042.

Metallosupramolecular polymers (MSPs) *Reversible metal-ligand interaction*

17

18 M = Cu²⁺, Ni²⁺

Green electrochromic material

• <u>Metallosupramolecular polymers (MSPs)</u>

Postively charged metallosupramolecular coordination polyelectrolyte absorbed by negatively charged PSS

TPY-metal system: Stability: Fe(II)> Ni(II)> Co(II)> Cu(II) Extra metal ions will lead to significant decrease in viscosity

Schütte, M.; Kurth, D. G.; Linford, M. R.; Cölfen, H.; Möhwald, H. *Angew. Chem. Int. Ed.* **1998**, *37*, 2891. Schmatloch, S.; van den Berg, A. M. J.; Alexeev, A. S.; Hofmeier, H.; Schubert, U. S. *Macromolecules* **2003**, *36*, 9943.

Metallosupramolecular polymers (MSPs) •

Environmentally responsive cross-linking MSPs

Kumpfer, J. R.; Rowan, S. J. J. Am. Chem. Soc. 2011, 133, 12866.

• <u>Metallosupramolecular polymers (MSPs)</u>

Environmentally responsive cross-linking MSPs

Beck, J. B.; Rowan, S. J. *J. Am. Chem. Soc.* **2003**, *125*, 13922. Kumpfer, J. R.; Rowan, S. J. *J. Am. Chem. Soc.* **2011**, *133*, 12866.

• <u>Metallosupramolecular polymers (MSPs)</u>

Photoluminescent supramolecular polymers

transfer process within rigid-rod polymers

36

• <u>Metallosupramolecular polymers (MSPs)</u>

Self-assembled electroluminescent polymers

Yu, S. C.; Kwok, C. C.; Chan, W. K.; Che, C. M. Adv. Mater. 2003, 15, 1643.

• <u>Metallosupramolecular polymers (MSPs)</u>

Han, F. S.; Higuchi, M.; Kurth, D. G. Adv. Mater. 2007, 19, 3928.

Burnworth, M.; Tang, L.; Kumpfer, J. R.; Duncan, A. J.; Beyer, F. L.; Fiore, G. L.; Rowan, S. J.; Weder, C. Nature 2011, 472, 334.

Optical-healable materials

Burnworth, M.; Tang, L.; Kumpfer, J. R.; Duncan, A. J.; Beyer, F. L.; Fiore, G. L.; Rowan, S. J.; Weder, C. Nature 2011, 472, 334.

<u>Representative Types of Host-Guest Monomers</u>

Yang, L.; Tan, X.; Wang, Z.; Zhang, X. Chem. Rev. 2015, 115, 7196.

<u>Representative Types of Host-Guest Monomers</u>

host molecules	molecular structures	typical guest molecules
β -cyclodextrin	HO HOH HO HOH HO HOH HO HOH HO HOH HO HO	adamantane, coumarin
cucurbit[8]uril	222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	methyl viologen, charged naphthalene, anthracene and alkane
calixarene	С С С С С С С С С С С С С С С С С С С 	charged alkane, viologen
crown ether	Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	viologen, charged amine
pillararene		charged imidazole and DABCO

Yang, L.; Tan, X.; Wang, Z.; Zhang, X. Chem. Rev. 2015, 115, 7196.

43

Liu, Y.; Yu, Y.; Gao, J.; Wang, Z.; Zhang, X. Angew. Chem. Int. Ed. 2010, 49, 6576.

Photoswitchable Cucurbit[8]uril-Based

del Barrio, J.; Horton, P. N.; Lairez, D.; Lloyd, G. O.; Toprakcioglu, C.; Scherman, O. A. J. Am. Chem. Soc. 2013, 135, 11760.

44

<u>Crown ether-Based AA-BB type</u>

- 35 has a smaller [M]_{crit} suggesting less cyclic structure in the mixture---less flexibility
- Much higher specific viscosity then normal crown ether based SPs, higher binding constant
- Robust enough to form film through normal dry spinning method

Niu, Z.; Huang, F.; Gibson, H. W. J. Am. Chem. Soc. 2011, 133, 2836.

(c)

<u>B-cyclodextrin-Based supramolecular polymers</u>

Dong, R.; Su, Y.; Yu, S.; Zhou, Y.; Lu, Y.; Zhu, X. Chem. Commun. 2013, 49, 9845.

<u>B-cyclodextrin-Based supramolecular polymers</u>

2D coronal T₁-weighted MR images of the mice

Aromatic Donor-Acceptor Interaction

Bisporphyrin tweezer via charge-transfer interaction

Haino, T.; Watanabe, A.; Hirao, T.; Ikeda, T. Angew. Chem. Int. Ed. 2012, 51, 1473.

Aromatic Donor-Acceptor Interaction

• Bis[alkynylplatinum(II)] Terpyridine Molecular Tweezer

Tian, Y.-K.; Shi, Y.-G.; Yang, Z.-S.; Wang, F. Angew. Chem. Int. Ed. 2014, 53, 6090.

Thanks for your attention!

• Q1

Q1: We have talked about many characterization methods for supramolecular polymers, here are some easy review on them, please fill in the blank.

Instability of the structure upon dilution is the biggest challenge for utilizing GPC to characterize supramolecular polymers.

Small (large or small in size) elutes out first in Asymmetric Flow Field-Flow Fractionation (AF4).

• Q2

Q2: Please figure out what happened after shining light on the supramolecular polymers. (Draw out the reaction)

• Q3

Q3: Please propose a route to synthesis following monomer. (starting material A can be used as polymer directly)

